Примеры приливно отливных течений мирового океана. Течения приливно-отливные

Приливно-отливные колебания уровня океана сопровождаются горизонтальным перемещением водных масс, которое носит название приливно-отливного течения. Поэтому судоводитель должен учитывать не только изменение глубин, но и приливно-отливное течение, которое может достигать значительной скорости. В районах, где наблюдаются приливы, судоводитель должен быть всегда осведомлен о высоте прилива и элементах приливно-отливного течения.

Приливы позволяют судам с большой осадкой заходить в некоторые порты, расположенные в мелководных бухтах и устьях рек.

Характер и величина приливов в Мировом океане отличаются большим разнообразием и сложностью. Величина прилива в океане не превышает 1 м. В прибрежных районах в связи с уменьшением глубин и усложнением рельефа дна характер приливов значительно изменяется по сравнению с приливами в открытом океане. У прямолинейных берегов и вдающихся в океан мысов величина прилива колеблется в пределах 2-3 м; в прибрежной части заливов и при сильно изрезанной береговой линии она достигает 16 м и более.

В морях высота прилива зависит от того, какая имеется связь у данного моря с океаном. Если море далеко вдается в сушу и имеет узкий и мелководный пролив с океаном, то приливы в нем обыкновенно невелики.

В Черном море приливы почти незаметны.

Приливная волна, проникая в устье рек, способствует колебанию их уровня, а также существенно влияет на скорость течения воды в устьях. Так, нередко скорость приливного течения, преобладая над скоростью реки, изменяет течение реки на обратное.
Течение, которое направляется в сторону движения приливной волны, называется приливным, противоположное - отливным.

Скорость приливно-отливных течений прямо пропорциональна величине прилива. Следовательно, для определенного пункта скорость приливно-отливных течений в сизигию будет значительно больше скорости, чем в квадратуру.

Приливно-отливные течения отличаются от всех других течений тем, что они захватывают всю толщу водных масс от поверхности до дна, лишь незначительно уменьшая свою скорость в придонных слоях.

Смена приливного течения на отливное и наоборот происходит как в момент полных и малых вод, так и в момент среднего стояния уровня. Нередко смена течений происходит в промежуток времени между полной и малой водой. При смене приливного течения на отливное и обратное скорость течения равна нулю.

Основным признаком, по которому производится классификация приливов, является преобладающий период, проявляющийся в наблюдаемых колебаниях, т.е. степень близости этих колебаний к полусуточному или суточному типам. Объективным количественным критерием определения характера прилива может служить соотношение амплитуд суточных и полусуточных гармоник.

В зависимости от этого отношения выделяют следующие типы приливов:
1) полусуточные приливы;
2) смешанные приливы;
а) неправильные полусуточные;
б) неправильные суточные;
3) суточные приливы.
Помимо основных типов приливов, выделяют так называемые аномальные приливы.

Полусуточные солнечные приливы имеют период, равный 12 ч, т.е. половине солнечных суток. Поэтому полные и малые воды в течение суток наблюдаются в одни и те же часы суток. Такие приливы имеют место в Котабару (о. Калимантан) и Эйре (южное побережье Австралии).

В течение лунных суток бывают две полные и две малые воды (рис. 17). Период равный половине лунных суток и составляет в среднем 12 ч. 25 мин. Высоты следующих друг за другом полных и малых вод мало отличаются, т. е. суточные неравенства почти отсуттвуют. Подъем и падание уровня протекают правильно, ход уровня выражается симметричной синсоидальной кривой. Время роста и время падения уровня практически равны.

Полусуточные параллактические приливы отличаются от обычных полусуточных сильно выраженным параллактическим неравенством. Величина параллактических приливов заметно меняется в зависимости от изменения расстояния между Луной и Землей. Таковы, например, приливы у мыса Кларка в заливе Креста (Берингового море).
Двойные полусуточные приливы (четвертьсуточные) характерны появлением у полусуточных приливов дополнительных полных и малых вод вследствие влияния мелководья. У таких приливов в течение лунных суток наблюдается четыре полных и четыре малых воды. Такие приливы в частности наблюдаются у села Зимняя Золотица (Белое море) и в районе порта Саутгемптон (Ла-Манш).

Судовые пособия по приливам:

Адмиралтейское пособие «Приливы и отливы».

Корректура для Адмиралтейских Таблиц приливов;

Информация об использовании карт и Таблиц Приливов при расчёте запаса воды под килем;

Таблицы приливов ВА «Admiralty Tide Tables» (NP201 - NP204)
и другие ВА публикации…

Каждый квартал (в конце марта, июня, сентября и декабря) публикуется список пособий по приливам.

Данные об элементах приливно-отливных течений выбирают из Атласа приливно-отливных течений, а для некоторых участков морей- из таблиц, помещенных на навигационных картах. Общие указания о течениях даны также в лоциях морей.

Определение скорости и направления течения на заданный момент в данном месте по Атласу находят следующим образом.

Вначале по Атласу определяют основной порт для данного места, после этого по Таблице приливов (ч. I) находят время полной воды, ближайшей к заданному, рассчитывают промежуток времени (в часах) до или после момента полной воды в основном порту относительно заданного момента. Затем на рассчитанный промежуток времени до наступления или после момента полной воды находят в Атласе направление течения (в градусах) и скорость (в узлах).

Учет приливов в судовождении

Степень изученности приливно-отливных явлений различна в разных районах Мирового океана, и в зависимости от этого все пункты Мира подразделяют на 3 группы.

1. Основные пункты (порты), для которых имеются подробные
данные о приливах на каждый день в ежегодных изданиях.

2. Дополнительные пункты, приписанные к основным, для которых
расчет приливов производится через основной пункт.

3. Пункты, для которых даются прикладные часы, позволяющие
рассчитывать время полных и малых вод и их высоты исходя их моментов кульминации Луны.

Таблицы приливов. Существуют специальные таблицы приливов, с помощью которых можно предвычислить важнейшие приливные элементы или путем несложных расчетов найти моменты и высоты приливов.

Для решения различных задач на предвычисление элементов для большего числа пунктов (портов) земного шара, посещаемых судами, служат таблицы приливов.

Ввиду многочисленности таких пунктов таблицы издаются в 4 томах.

Тома I и II состоят из трех частей: часть I - приливы в основных пунтках; часть II - поправки для дополнительных пунктов; часть III - приливные течения.

Тома III и IV - из двух частей: часть I-основные пункты, часть II-дополнительные пункты.

В каждом томе даны общие сведения и примеры пользования таблицами, вспомогательные таблицы, где основными являются «интерполяционные» таблицы для вычисления высот уровня моря на промежуточные между полными и малыми водами моменты времени.

В конце каждого тома дан алфавитный указатель для нахождения заданного пункта. При решении различных задач необходимо пользоваться пояснениями, даваемыми в таблицах приливов.

С помощью «Таблиц приливов» решаются следующие основные задачи.

1. Определение времени и высот полных и малых вод (утренних
и вечерних), продолжительности роста, продолжительности падения,
величины прилива и величины среднего уровня.

2. Определение поправки глубины на заданный момент.

3. Определение времени, когда поправка глубины достигнет
заданного значения.

Задачи для основных пунктов.

Пример 1. Определить время и высоты полных и малых вод, продолжительность роста и падения уровня, величину прилива и средний уровень в заданном пункте на указанную дату.

1. По таблице приливов находим страницу, на которой помещены данные для заданного пункта на указанную дату.

2. Выписываем моменты и высоты полных и малых вод tмв, tпв (по два значения) и hпв, hмв (по два значения).

3. Рассчитываем период падения Тп и период роста Тр для двух пар вод:

Тп = tмв1 -tпв1,

Тр = tпв2 -tм в2

4. Рассчитываем величину прилива:

В = hпв-hмв.

При работе с “Admiralty Tide Tables” для стандартных пунктов указываются на заданную дату значения моментов времени и высоты полной и малой воды. Если пункт дополнительный, то дня него находится стандартный пункт и поправки моментов и высот для данного дополнительного порта. Затем строится график по исправленным значениям моментов времени и высотам уровня прилива.

88. Международная Конвенция SOLAS с изменениями и дополнениями. Содержание Конвенции и её использование на судне.

(СОЛАС – 74) – International Convention for the Safety of life at Sea.

Конвенция СОЛАС в своих последовательных модификациях обычно рассматривается в качестве самого важного из всех международных договоров, относящихся к безопасности торговых судов. Первый вариант был принят в 1914, второй – в 1929, третий – в 1948-м. Принятие Конвенции 1960 года было первой главной задачей для ИМО после ее создания. Конвенция эта представляла значительный шаг вперед в модернизации правил и в отражение технических достижений в судоходстве. В 1974 году была принята совершенно новая конвенция, состоящая из 8 глав, которая включала в себя не только поправки, согласованные к этому времени, но и новую процедуру их принятия. (теперь они должны применяться в течении определенного периода времени) основная цель конвенции СОЛАС – определение минимальных стандартов по конвенции, оборудованию и плаванию судов, отвечающих их безопасности.

Комитет по безопасности на море (КБМ) Международной Морской Организации (ИМО) принял ряд поправок к Приложения СОЛАС-74. Ряд поправок был также принят Международной конференцией по глобальной морской системе связи при бедствии и для обеспечения безопасности 11 ноября 1988 г. Конвенция содержит сводный текст Конвенции СОЛАС-74, Протокола-88 к ней и всех поправок, принятых по апрель 1992 г. конференциями Комитета безопасности на море.

Рассмотрим: структуру конвенции:

Глава I. Общие положения.

часть А – применение, определение, исключения, изъятия;

часть В – проверки, освидетельствования, контроль, и т. д.

Глава II – 1. Конструкция – деления на отсеки и остойчивость, механические и электрические установки.

Глава II – 2. Конструкция – противопожарная защита, обнаружение и тушение пожара.

Глава III. Спасательные средства и устройства.

Глава VI. Радиосвязь.

Правило VI/741 требует, чтобы все суда после 1 февраля 1999 года были оборудованы соответствующими радиоустановками.

Глава V. Безопасность мореплавания.

Содержит21 правило: сообщения об опасностях, метеорологической службе, службе ледовой разведки, установлении схем движения судов, сообщения о бедствии, навигационном оборудовании, спасательных сигналах, навигационных изданиях, укомплектовании экипажей.

Глава VI. Перевозка грузов.

Эта глава основана на Кодексе безопасной практики размещения и крепления груза (Резолюция А 714 (17)), Кодексе безопасной практики перевозки навалочных грузов – ВС Code (Резолюция А934 (XI); Кодексе безопасной практики перевозки лесных палубных грузов (Резолюция А 719(17)).

Глава VII. Перевозка опасных грузов.

Основой для создания современных правил перевозки опасных грузов служит пункт 4 правила. 1 данной главы, а также применение международного кодекса морской перевозки опасных грузов – МОПОГ (IMDG Code), и соответствующих разделов кодекса безопасной перевозки навалочных грузов (BC Code).

Глава VIII. Ядерные суда.

Глава IX. Управление безопасной эксплуатацией судов.

Была принята на конференции по СОЛАС 24 мая 1994 года в Лондоне. Она предусматривает внедрение и применение международного кодекса по управлению эксплуатации судов и предотвращении загрязнения (МКУБ или ISM Code). Этот Кодекс является одним из самых важных документов по обеспечению безопасности мореплавания, принятых ИМО. ИМО заявляет, что МКУБ является предупреждающим документом, направленным на то, чтобы отклонения, которые могут так или иначе повлиять на безопасность на море, были заранее выявлены и предприняты действия, предупреждающие их развитие. Применение МКУБ позволяет уменьшать количество проишествий во много раз. Отсутствие сертификации по МКУБ автоматически переводят судоходную компанию в разряд аутсайдеров. Она выходит из международного судоходства, не подтвердив качество своих услуг и соответствие стандартам безопасности.

ГлаваX. О мерах безопасности для высокоскоростных судов.

Глава XI. Специальные меры по повышению безопасности в море.

89. Международная Конвенция MARPOL – 73/78.

Документ является комбинацией двух других соглашений, принятых соответственно в 1973 и 1978 гг. Государство, принявшее Протокол 1978, принимает также Конвенцию МАРПОЛ – 73, измененную и дополненную этим протоколом. Положения Конвенции и протокола должны рассматриваться и толковаться совместно как положения единого документа, получившего название МАРПОЛ 73/ 78 (вступил в силу 2 октября 1983).

Первым международным документом по предотвращению загрязнения моря нефтью была Конвенция, принятая в Лондоне в 1954 г. Однако этот документ не был достаточно эффективен для борьбы с загрязнениями, и после аварии танкера «Торри Каньон» было принято решение о его пересмотре. В 1973г. была принято Международная конвенция по предотвращению загрязнения с судов. До 1978 г. её ратифицировали только 3 государства.

Участившиеся аварии танкеров потребовали новых мер безопасности. Протокол 1978 г. к МАРПОЛ-73 является самостоятельным документом и включает в себя все положения 1973. Он вступил в силу в 1983 г.

В настоящее время вступило в силу 1, 2, 3 и 5 приложения, 4 – пока не вступало в силу. В 1995 г. приняты новые правила (поправки) к приложениям 1, 2, 3, 5: «Контроль за выполнением эксплуатационных требований».

В этом документе предусматриваются меры по предотвращению загрязнения с судов не только нефтью, но и другими вредными веществами, которые перевозятся на судах или образовываются в процессе их эксплуатации. Собственно правила предотвращения загрязнения с судов содержатся в пяти приложениях. Приложения I и II обязательны для выполнения странами-участницами Конвенции, остальные три – факультативны.

Применительно к предотвращению загрязнению моря нефтью положения Конвенции (приложение I) распространяются на все нефтяные танкеры валовой вместимостью 150 рт и более и на любые суда валовой вместимостью 400 рт и более. В соответствии с ними запрещается сброс в море нефти или нефтеводяной смеси с нефтяных танкеров, за исключением случаев, когда соблюдаются сразу все следующие условия: танкер находится за пределами особых районов (Средиземное море, Балтийское море с Балтийским и Финским заливами, Черное море, Красное море, включая Акабский заливы); танкер находится; на расстояние более 50 миль от берега; танкер имеет ход; мгновенная интенсивность сброса не превышает 60 л на милю и т. д.

Несколько менее строгие требования установлены в отношении разрешения сброса с неналивных судов валовой вместительностью 400 р. т. и более, а также из машинно-котельных отделений танкеров.

Соблюдаются все следующие условия, когда сброс нефти или нефтесодержащей смеси разрешен. Судно находится за пределами особого района, судно находиться на расстоянии более 12 миль от ближайшего берега, судно имеет ход, на судне действует оборудование для сепарации нефтеводяной смеси или система фильтрации нефти.

В Приложении II Конвенция МАРПОЛ – 73/78 предусмотрены критерии и меры контроля за сливом ядовитых жидких веществ, перевозимых наливом. Сливать их остатки разрешается только в приёмные устройства, сброс в море строго регламентирован.

Правила предусмотренные Приложением III применяются ко всем судам, перевозящим вредные вещества в упаковке, грузовых контейнерах, съёмных танках и цистернах. Порожние емкости, не очищенные от остатков такого вещества, рассматриваются как вредные вещества.

Приложение IV. Конвенция предусматривает обязательство государств по оборудованию судов специальными устройствами переработке и обеззараживанию сточных вод. Судну разрешается сбрасывать измельчённые и обеззараженные сточные воды за пределами 12 миль от ближайшего берега при условии, что они сбрасываются не мгновенно, а постепенно, при скорости судна 4 уз.

Приложение V содержит допустимые стандарты сброса отходов, образуемых в процессе нормальной эксплуатации судна и подлежащих постоянному или периодическому их удалению с судна. Запрещается выбрасывание в море всех видов пластмасс, включая синтетические тросы, рыболовные сети и т. д. Мусор, обладающий плавучестью разрешается выбрасывать за пределами 25 миль, а не измельченные пищевые и другие отходы – за пределами 12 миль от ближайшего берега. Сброс измельченного и размолотого мусора (пищевых и других отходов и т. д.) может производиться за пределами 3 миль от берега.

Судно BRT > 400 rt или пассажирское судно должно иметь выполнять «План управления мусором (процедуры сброса, хранения, обработки и удаления мусора)». Необходимо иметь и вести «Журнал операций с мусором».

Разность между нулём глубин и уровнем полной воды называется высотой полной воды hПВ. Разность между нулём глубин и уровнем малой воды называется высотой малой воды hМВ. Разность между высотами полной воды и следующей за ней малой называется величиной прилива В = hПВ hМВ. Время между двумя соседними моментами полной или малой воды называется периодом прилива.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


роки классической навигации. Лоция.

18. Приливо-отливные явления

и их учёт в судовождении.

Поверхность океанов не находится в покое, а периодически меняет своё положение – колеблется. Это происходит под влиянием различных процессов и сил, которые можно объединить в следующие основные группы:

Геодинамические и геотермические явления в земной коре – землетрясения и моретрясения, извержения вулканов (цунами), поднятия и опускания суши (тектоника), поступления тепла через дно океана.

Механические и физико-химические воздействия на поверхность океана – солнечная радиация, изменение атмосферного давления, ветер, который вызывает сгонно-нагонные колебания, осадки, береговой сток и др.

Космические (астрономические) приливообразующие силы, которые являются основными в приливо-отливных явлениях.

Понятие о приливах и терминология

Приливо-отливными явлениями называются сложные волновые движения водяных масс океана. Следствием этих движений являются периодические изменения уровня и течений.

Возникают приливо-отливные явления вследствие действия между Землёй, Луной и Солнцем приливообразующих сил. Приливообразующая сила Луны в 2,17 раза больше, чем приливообразующая сила Солнца (из-за удалённости), поэтому основные черты приливо-отливных явлений определяются, главным образом, взаимным положением Земли и Луны.

Существенное влияние на величину и характер приливо-отливных явлений в каждом конкретном месте оказывают физико-географические условия: глубины, очертания берегов, наличие островов и другие. Вследствие влияния физико-географических условий характер приливов может меняться в очень широких пределах. Так, в Балтийском море они практически отсутствуют, в заливе Фанди, расположенном примерно на той же широте, колебания уровня достигают 18 метров.

Приливо-отливные явления характеризуются двумя основными факторами:

Изменениями уровня;

Приливо-отливными течениями.

Обе стороны этого процесса связаны между собой, однако, из-за отсутствия единой теории, приливо-отливные колебания уровня и приливо-отливные течения изучаются отдельно.

Приливо-отливные явления оказывают большое влияние на судоходство и безопасность мореплавания, поэтому информация о них регулярно публикуется в специальных пособиях. Чтобы правильно ими пользоваться для решения различных навигационных задач, судоводители обязаны хорошо представлять природу этого явления.

Приливные колебания можно изобразить графически.

На графике суточного прилива по оси абсцисс время, t , а по оси ординат высота прилива, h , над условно принятом уровнем – нулём глубин, 0гл.

Процесс повышения уровня моря называется прилив , понижения – отлив .

Наивысшее положение уровня при приливе называется полная вода ПВ, наинизшее при отливе малая вода МВ .

Разность между нулём глубин и уровнем полной воды называется высотой полной воды h ПВ.

Разность между нулём глубин и уровнем малой воды называется высотой малой воды h МВ.

Разность между высотами полной воды и следующей за ней малой называется величиной прилива

В = h ПВ - h МВ .

За нуль глубин на российских морских картах на морях с приливами принят наинизший теоретический уровень (НТУ) – самый низкий уровень, возможный по астрономическим условиям, то есть по взаимному расположению Земли, Луны и Солнца.

Время между двумя соседними моментами полной или малой воды называется периодом прилива.

В зависимости от величины периода, приливы делятся на суточные, полусуточные, смешанные, неправильные полусуточные, неправильные суточные и аномальные.

Суточные приливы (С) – такие, у которых средний период равен лунным суткам (24 часа 50 минут). Суточные приливы бывают, чаще всего, в Тихом океане.

Полусуточные приливы (П) – такие, у кото-рых период равен половине лунных суток (12 часов 25 минут). Полусуточные приливы наблюдаются вдоль Мурманского берега Баренцева моря, на большей части Белого моря и практически по всему Атлантическому океану.

У полусуточных приливов два раза в сутки наступает полная вода, ПВ и два раза малая вода, МВ. Так как обе ПВ и обе МВ имеют разную высоту, то их обозначают так:

ВПВ – высокая полная вода;

НПВ – низкая полная вода;

ВМВ – высокая малая вода;

НМВ – низкая малая вода.

Высоты ПВ и МВ полусуточных приливов над нулём глубин обозначают следующим образом:

h ВПВ – высота высокой полной воды;

h НПВ – высота низкой полной воды;

h ВМВ – высота высокой малой воды;

h НМВ – высота низкой малой воды.

Смешанные приливы – такие, у которых в течение лунного месяца период меняется с полусуточного на суточный. Смешанные приливы делятся на неправильные суточные (НС), у которых преобладает суточный период, и неправильные полусуточные (НП), у которых преобладает полусуточный период.

Аномальные приливы – такие, у которых характер подъёма и спада вод усложняется мелководьем, это суточные мелководные (СМ) и полусуточные мелководные (ПМ). Аномальные приливы наблюдаются в некоторых портах пролива Ла-Манш и в Белом море.

Величина прилива В в течение месяца меняется, и в некоторые дни достигает максимальной величины, а в другие – минимальной. Величина прилива меняется согласно с фазой Луны, то есть зависит от взаимного расположения Земли, Луны и Солнца.

Наиболее высокая полная вода и наиболее низкая малая вода, то есть максимальная величина прилива (В) наблюдается после полнолуний и новолуний, то есть когда Земля, Луна и Солнце находятся приблизительно на одной прямой линии, и приливообразующие силы Луны и Солнца складываются. Такие периоды называются сизигии (гр. sizigia – соединение).

Наиболее низкая полная вода и наиболее высокая малая вода, то есть минимальная величина прилива, наблюдается после I и после IV четвертей в фазах Луны. В это время Луна и Солнце располагаются приблизительно под прямым углом относительно Земли, и приливообразующие силы Солнца ослабляют приливообразующие силы Луны. Такие периоды называются квадратура (лат. quadratura – четвёртая часть, четверть).

На приливы оказывает влияние также и склонение Луны. При больших склонениях Луны приливы называются тропическими , а при прохождении Луны через экватор – экваториальными.

Промежуток времени между моментом верхней или нижней кульминациями Луны и моментом наступления полной воды на данном меридиане называется лунным промежутком – Тл.

Средний из лунных промежутков в дни сизигий, вычисленный из большого числа наблюдений, называется прикладной час порта – ПЧ.

Для характеристики приливов во времени применяются следующие термины:

t ПВ – момент полной воды;

t МВ – момент малой воды;

Т р – время роста уровня – время от момента малой воды до момента полной воды:

Т р = t ПВ – t МВ ;

Т п – время падения уровня – время от момента полной воды до момента малой воды:

Т п = t МВ – t ПВ ;

Т ст – время стояния уровня – время, в течение которого уровень, дойдя до определённой высоты, остаётся неизменным.

Российские таблицы приливов

Приливо-отливные явления в различных районах мирового океана изучены не одинаково. В зависимости от степени изученности, все пункты подразделяют на три группы:

Основные пункты (порты), для которых имеются подробные данные о приливах.

Дополнительные пункты, привязанные к основным, для которых расчёт приливов производится через основной пункт.

Пункты, для которых даются прикладные часы, по которым можно рассчитать моменты ПВ и МВ и их высоты, исходя из моментов кульминации Луны.

Океанографическим институтом ежегодно издаются Таблицы, по которым можно предвычислять моменты и высоты приливов. Таблицы приливов издаются в четырёх томах:

Том I . Воды европейской части России.

Том II . Воды азиатской части России.

Том III . Зарубежные воды. Атлантический, Индийский и Северный Ледовитый океаны.

Том IV . Зарубежные воды. Тихий океан.

Том I и том II состоят из трёх частей каждый:

Часть I - Приливы в основных пунктах.

Часть II - Поправки для дополнительных пунктов.

Часть III - Приливные течения.

Том III и том IV состоят каждый из двух частей:

Часть I - Основные пункты.

Часть II – Дополнительные пункты.

В начале каждого тома даны общие сведения о приливах, а в конце – вспомогательные таблицы и алфавитный указатель пунктов.

В разделе «Общие сведения» приводятся следующие данные:

Влияние гидрометеорологических условий на приливы;

Основные термины и обозначения;

Сведения о неравенстве приливов;

Критерии, определяющие характер приливов;

Примеры пользования таблицами приливов.

В таблицах приливов разных лет издания могут быть различия в общих сведениях, поэтому с ними необходимо знакомиться всякий раз при пользовании новыми таблицами.

В I части «Приливы в основных пунктах» приведены моменты и высоты полных и малых вод на каждые сутки данного календарного года для основных пунктов, перечень которых приведен в алфавитном порядке на обратной стороне обложки таблицы.

Во II части «Поправки для дополнительных пунктов» приведены поправки моментов и высот, вводя которые в выбранные из части I сведения о приливах в основном порту, можно получить данные о моментах и высотах ПВ и МВ в дополнительных пунктах.

Во «Вспомогательных таблицах» приведены:

Интерполяционная таблица для вычисления уровня на промежуточные между МВ и ПВ моменты;

Средние высоты сизигийных и квадратурных ПВ и МВ и средний уровень моря (СУМ) для некоторых пунктов;

Таблицы поправок среднего уровня моря на сезонные изменения и на атмосферное давление;

Таблицы перевода поясного времени в местное;

Таблицы перевода футов в метры;

Астрономические данные (фазы, склонение, перигей и апогей Луны).

Задачи, решаемые по таблицам

Определение момента и высоты полных и малых вод в основном пункте.

Определение высоты уровня прилива в любой промежуточный момент между МВ и ПВ в основном пункте.

Определение момента и высоты полных и малых вод в дополнительном пункте.

Определение высоты уровня прилива в любой промежуточный момент между МВ и ПВ в дополнительном пункте.

Преподаватель высшей категории Кисенков Владимир Ильич

Другие похожие работы, которые могут вас заинтересовать.вшм>

8437. Явления переноса 610.36 KB
Средняя длина свободного пробега молекул эффективный диаметр молекул эффективное сечение молекулы 3. Уравнение диффузии из молекулярнокинетических представлений. В тепловом равновесии величина средней кинетической энергии броуновской частицы ℰ пред совпадает со средней кинетической энергией одномерного движения молекул идеального газа: ℰ пред = и зависит только от температуры определяемой из опыта.Средняя длина свободного пробега молекулы.
21321. Сущность воспитания как социального явления 49.55 KB
Она изучает и решает проблемы воспитания обучения образования и развития человека возникающие на разных этапах его жизни в различных условиях социально-экономического и научно-технического развития общества которое постоянно ставит новые задачи в области образования и воспитания. Предметом педагогики является целостный гуманистический процесс воспитания и образования развития социально-активной личности подготовки ее к жизни и труду общественной деятельности с учетом общественно-экономической обстановки в стране. Личность в процессе...
2376. Физические процессы и явления в диэлектрических материалах 846.16 KB
Характерными особенностями любого диэлектрика являются поляризация в электрическом поле высокое удельное сопротивление незначительное рассеяние энергии электрического поля а также электрическая прочность т. способность противостоять сильным электрическим полям. Свойства диэлектриков в существенной мере могут зависеть от температуры и влажности окружающей среды от условий теплоотвода частоты и равномерности электрического поля степени однородности самого диэлектрика его агрегатного состояния и других факторов. Однако при...
19682. Учет текущих обязательств, учет расчетов по имущественному и личному страхованию 71.46 KB
Для определения себестоимости конкретного вида продукции производится классификация затрат по статьям калькуляции: сырье и основные материалы; возвратные отходы вычитаются; покупные изделия полуфабрикаты и услуги производственного характера сторонних организаций...
1300. Психологические явления и психологические факты 262.98 KB
Можно сказать что психология это наука о душе о внутреннем мире человека именно так переводится слово психология. Исследование внутреннего мира человека общих закономерностей его взаимодействия с внешним миром осуществляет специальная наука психология...
11435. Учет расчетов с персоналом по оплате труда, порядок оформления, синтетический и аналитический учет расчетов с персоналом по оплате труда 35.81 KB
Разным категориям работников могут быть установлены различные системы оплаты труда. Например, общехозяйственному персоналу труд может оплачиваться повременно, а рабочим основного производства - сдельно. Положение об оплате труда утверждается приказом руководителя организации.
7667. Учет запасов 21.76 KB
Влияние специфики строительства на учет материалов. Особенности учета давальческих материалов в строительстве. На начальном этапе деятельности любой строительной организации после всех организационных вопросов заготавливаются запасы сырья и материалов необходимые для изготовления продукции. Характерной чертой строительства является использование значительного количества строительных материалов конструкций и деталей как по их номенклатуре так и в физическом выражении.
11445. УЧЕТ И АУДИТ ТМЗ 46.16 KB
Данные учета должны содержать всю необходимую информацию для осуществления контроля за полезным движением и рациональным использованием производственных запасов. Отсутствие четкого учета приводит к срывам контроля за наличием и расходом производственных запасов. Они должны находится в сфере влияния руководства предприятия.
4857. УЧЕТ ЗАПАСОВ 40 KB
Этого можно добиться путем экономии материалов и более эффективного их использования. Приобретение материалов в запас приводит к иммобилизации оборотных средств. Перед бухгалтерским учетом производственных запасов стоят следующие задачи: –контроль за сохранностью запасов на складах; – контроль за состоянием складских запасов; –документальное оформление всех операций по поступлению и расходу производственных запасов; – выбор обоснованной учетной политики в отношении метода оценки материалов; –определение всех затрат связанных с...
20016. Учёт материалов 42.24 KB
Непрерывность производства требует чтобы постоянно находилось на складах достаточное количество сырья и материалов для полного удовлетворения потребностей производства в любой момент их использования. Целью и задачами работы выступает изучение бухгалтерского учета материалов. 1 Понятие и характеристика материалов Согласно Положению по бухгалтерскому учету Учет материально-производственных запасов ПБУ 5 011 к бухгалтерскому учету в качестве материально-производственных запасов принимаются активы1: используемые в качестве сырья материалов...

Периодические колебания уровня вызываются проявлением периодических сил притяжения Луны и Солнца - так называемыми приливообразующими силами.

Приливно-отливные колебания уровня охватывают практически всё побережье Мирового океана, и для краткости их называют приливами. Таким образом, приливные явления представляют собой динамические процессы в водах морей и океанов (в том числе и колебания уровня).

Основные понятия, связанные с приливами, заключается в определениях полной и малой воды, величины прилива и отлива как разницы между полными соседними и малыми водами, продолжительности роста и спада уровня (фазы прилива и отлива), продолжительности приливоотливного цикла.

Предельный размах приливных колебаний уровня в каждом пункте заключается между наивысшими и наинизшими теоретическими уровнями, вычисляемыми расчётным путём.

В зависимости от продолжительности приливно-отливного цикла различают:

Полусуточные приливы (П) - с периодом приблизительно в половину суток, т.е. имеющие в продолжение суток две полные и малые воды; - суточные приливы (С) - имеющие в течение суток полную и малую воду;

Неправильные полусуточные (НП) - с заметной суточной разницей в значениях соответствующих экстремумов уровня;

Неправильные суточные (НС) - суточные приливы, которые при малых склонениях Луны становятся полусуточными при существенном уменьшении их величины;

Смешанные приливы - неправильные полусуточные и (или) неправильные суточные приливы.

Особо следует выделить аномальные приливы, которые по отдельным признакам отличаются от перечисленных выше основных видов приливов.

Например, влияние мелководья может быть столь значительно, что к общему названию прилива добавляется название “мелководный”. При этом изменяется продолжительность времени роста и падения уровня.

В устьевых участках рек прилив по времени менее продолжителен, чем отлив.

Иногда влияние мелководья становится столь значительным, что на кривой полусуточных приливов появляются дополнительные полные и малые воды. Такие приливы встречаются редко, в частности, они наблюдаются в пунктах Портленд, Саутгемптон (пролив Ла-Манш) или на Белом море (явление “маниха”).
Другим примером искажения приливов местными условиями может служить явление под названием “бор” (маскарэ, поророкам) и характеризующееся тем, что прилив продвигается вверх по реке в виде волны или ряда волн с очень резким подъемом уровня.

Приливам свойственны следующие неравенства:

суточные неравенства в высоте, представляющие собой разность высот двух последовательных полных или малых вод (для различных пунктов суточные неравенства имеют различные величины - от малозаметного различия в высотах смежных полных или малых вод до полного исчезновения одной полной и одной малой воды);

полумесячные неравенства в высотах и величинах приливов (полумесячное неравенство, зависящее от фазы Луны, наиболее ярко проявляется в приливах полусуточного характера). Во время полнолуния величина полусуточных приливов бывает максимальной - наступают так называемые сизигйные приливы. В первой и третьей четвертях приливы имеют наименьшую величину - наступают квадратурные приливы;

полумесячное неравенство, зависящее от склонений Луны и Солнца (тропическое неравенство) обычно является основным в суточных и неправильных суточных приливах, при больших склонениях Луны, приливы называются тропическими и отличаются большой величиной, во время прохождения Луны через экватор, приливы называются экваториальными и имеют малые величины;

месячное неравенство приливов (параллактическое) проявляется в зависимости от расстояния между Землёй и Луной (перигей). Минимальные значения величин приливов наблюдаются при наибольшем расстоянии между Землёй и Луной (апогей).

Нуль глубины" и "Поправка глубины".

Нулём глубин называется условная поверхность, от которой даются отметки глубин на мopcких навигационных картах.

Действительная глубина в любой точке может быть определена путём алгебраического суммирования глубины Нк, указанной на карте, с высотой h мгновенного приливного уровня моря, определённого по Таблицам приливов.

В большинстве случаев в качестве нулей глубин выбираются наинизшие уровни, но возможны случаи, когда действительная глубина окажется меньше отметки, показанной на карте. В Таблицах приливов на эти дни даются отрицательные высоты малых вод, которые и надо вычитать из отметок глубин на карте.

В Таблицах приливов и на отечественных морских картах на иностранные воды сохраняются те же нули глубин, какие приняты на соответствующих иностранных картах. Вследствие этого Таблицы приливов могут быть использованы при работе с любыми иностранными картами.

Основным навигационным пособием, содержащим предвычисленные уровни по Мировому океану, являются таблицы приливов. Различают таблицы приливов календарного типа, издаваемые ежегодно на календарные даты, и таблицы постоянного действия, рассчитанные на много лет. Предвычисленные уровни в таблицах приводятся для морей России относительно наинизшего теоретического уровня (НТУ), а по зарубежным водам относительно нулей глубин, какие приняты на иностранных картах

В Мировом океане течения вызываются действием ветра на водную поверхность, действием силы тяжести и приливообразующих сил. Независимо от причины возникновения течение испытывает влияние внутреннего трения воды и отклоняющего действия вращения Земли. Первое замедляет течение и вызывает завихрения на границе слоев с разной плотностью, второе изменяет его направление, отклоняя вправо в северном и влево в южном полушариях.
По происхождению течения делятся на фрикционные (главная причина - трение движущегося воздуха о поверхность воды), гравитационно-градиентные (причина - стремление силы тяжести выровнять поверхность и ликвидировать неравномерное распределение плотности) и приливо-отливные (причина - изменение уровня, обусловленное приливообразующими силами).
Во фрикционных течениях можно выделить ветровые, вызванные временными ветрами, и дрейфовые, вызванные ветрами постоянными (или господствующими). В циркуляции вод Мирового океана дрейфовые ветры имеют наибольшее значение.
Гравитационно-градиентные течения подразделяются на сточные (стоковые) и плотностные. Сточные течения возникают в случае устойчивого поднятия уровня воды, вызванного ее притоком и обилием осадков, или, наоборот, в случае опускания уровня, обусловленного оттоком воды и потерей ее на испарение. Примером сточного течения, связанного с повышением уровня в результате притока воды из соседнего моря (Карибского), может быть Флоридское течение, обеспечивающее сток из Мексиканского залива в Атлантический океан. Сточное течение, обусловленное повышением уровня в связи со стоком рек, наблюдается в морях Карском и Лаптевых. Сточное течение может вызывать ветер (сгоны и нагоны воды).
Плотностные течения - результат неодинаковой плотности воды на одной и той же глубине. Они возникают, например, в проливах, соединяющих моря с разной соленостью (Гибралтарский пролив, Босфор и др.). Различия в плотности воды могут быть вызваны неодинаковым давлением атмосферы на разные части Океана. Возникающие при этом плотностные течения получили название бароградиентных.
Приливо-отливные течения создаются горизонтальной составляющей приливообразующих сил. Эти течения захватывают всю толщу воды. Скорость приливных течений прямо пропорциональна высоте прилива. В проливах и заливах она зависит от их поперечного сечения. Если в открытом Океане скорость приливного течения всего около 1 км в час, то в узких проливах она достигает 22 км в час. С глубиной приливное течение очень медленно (медленнее всякого другого) теряет скорость. Период приливо-отливных течений зависит от периода прилива (полусуточный, суточный). Приливо-отливное течение сохраняет прямолинейное направление движения (туда и обратно) только в проливах. В открытом Океане приливное течение отклоняется от прямолинейного движения и принимает вращательный характер, совершая полный оборот (по часовой стрелке в северном полушарии и против нее - в южном полушарии) за 12 час. 25 мин. или за 24 часа 50 мин.
Так как причины возникновения течений могут действовать одновременно, течения нередко являются комплексными.
Течения могут существовать как инерционные некоторое время после того, как действие вызвавшей его силы прекратилось.
В зависимости от расположения в толще океанской воды выделяются течения поверхностные, глубинные, придонные.
По продолжительности существования можно выделить течения постоянные, периодические и временные (случайные). Принадлежность течений к той или иной группе определяется характером действия вызывающих их сил. Постоянные течения из года в год сохраняют направление и среднюю скорость. Их могут вызвать постоянные ветры (например, пассаты). Направление и скорость периодических течений изменяются периодически в соответствии с характером изменения вызвавших их причин (например, мусонные ветры, приливы). Временные течения вызываются случайными причинами, и в изменении их нет закономерности.
Течения могут быть теплыми, холодными и нейтральными. Первые теплее, чем вода в том районе Океана, по которому они проходят; вторые, наоборот, холоднее окружающей их воды; третьи не отличаются по температуре от вод, среди которых протекают. Температура холодного Перуанского течения в районе о-вов Галапагос достигает 22°, но она на 5-6° ниже температуры поверхностных вод в районе экватора. Теплое течение, проникающее на некоторой глубине из Атлантического океана в Северный Ледовитый, имеет температуру всего 2° (и даже ниже), но над ним и под ним находится вода с температурой 0°.
Как правило, течения, направляющиеся от экватора, теплые; течения, идущие к экватору, холодные.
Холодные течения обычно менее соленые, чем теплые. Это объясняется тем, что они текут из областей с большим количеством осадков и меньшим испарением или из областей, где вода распреснена таянием льдов.


При взаимодействии теплых и холодных течений холодные течения, если они не являются менее солеными, погружаются под теплые. Однако сочетание солености и температуры может привести к тому, что холодная вода оказывается над теплой (например, в Северном Ледовитом океане).
Изучение дрейфовых течений позволило вывести ряд закономерностей, которым эти течения подчиняются:
1) скорость дрейфового течения увеличивается с усилением вызвавшего его ветра и уменьшается с увеличением широты:

2) направление течения не совпадает с направлением ветра: оно отклоняется вправо в северном полушарии и влево в южном. При условии достаточной глубины и удаленности от берега величина отклонения теоретически равна 45°. Наблюдения показывают, что в реальных условиях величина отклонения на всех широтах несколько меньше 45°;
3) вследствие трения движение воды, вызванное ветром на поверхности, постепенно передается нижерасположенным слоям. Скорость течения при этом убывает в геометрической прогрессии, а направление течения (под влиянием вращения Земли) все более и более отклоняется и на некоторой глубине оказывается противоположным поверхностному (рис. 83). Скорость противотечения составляет 1/23 поверхностной скорости (4%). Глубину, на которой течение поворачивает на 180°, называют глубиной трения. На этой глубине влияние дрейфового течения практически заканчивается. Наблюдения показывают, что дрейфовые течения прекращаются на всех широтах на глубине около 200 м.
Передача течения вглубь требует времени. Для того чтобы течение распространилось до глубины трения, нужно около пяти месяцев.
На мелком месте отклонение течения от направления ветра уменьшается, и там, где глубина меньше 1/10 глубины трения, отклонения вообще не происходит.
Влияние рельефа дна сказывается на поверхностных течениях даже при сравнительно больших глубинах (до 500 м).
Сильно влияет на направление течения конфигурация берегов. Течение, направляющееся к берегу под углом, раздваивается, причем большая его ветвь идет в сторону тупого угла. Там, где к берегу подходят два течения, между ними за счет соединения их ветвей возникает сточно-компенсационное противотечение.
Общая схема поверхностных течений Мирового океана. Так как основной причиной поверхностных течений являются постоянные (или господствующие) ветры в трех океанах - Атлантическом, Тихом и Индийском, - общий характер распределения течений одинаков (рис. 84).
По обеим сторонам экватора пассатные ветры вызывают северное и южное пассатные (экваториальные) течения, отклоняющиеся от направления ветра и двигающиеся с востока на запад. Встречая на своем пути восточный берег материка, пассатные течения раздваиваются. Ветви их, направляющиеся к экватору, встречаясь, образуют сточнокомпенсационное межпассатное противотечение, следующее на восток между пассатными течениями. Ветвь северного пассатного течения, отклонившаяся к северу, двигается вдоль восточных берегов материка, постепенно отходя от него под влиянием вращения Земли. К северу от 30° с. ш. это течение попадает под действие господствующих здесь западных ветров и двигается поперек Океана с запада на восток. У западных берегов материка (около 50° с. ш.) это течение делится на два течения, расходящиеся в противоположные стороны. Одно из них идет к экватору, компенсируя убыль воды, вызванную северным пассатным течением, и присоединяется к нему, замыкая субтропическое кольцо с антициклонической (по часовой стрелке к центру области) системой течений. Второе течение вдоль берегов материка следует на север. Одна часть его проникает в Северный Ледовитый океан, а другая присоединяется к течению из Северного Ледовитого океана, завершая еще одно, меньшее (и менее выраженное), чем субтропическое, кольцо с циклонической системой (против часовой стрелки от центра области) течений.

В южном полушарии так же, как и в северном, возникает субтропическое кольцо (антициклоническое) течений. Второго, меньшего (циклонического) кольца течений не образуется. На юге, там, где расположено сплошное водное пространство (Южный Ледовитый океан), существует мощное дрейфовое течение западных ветров, соединяющее воды трех океанов.
Поверхностные течения Атлантического океана. В Атлантическом океане, как это показано на рисунке 84, существуют северное и южное пассатные течения и противотечения между ними. Южное пассатное течение расположено на экваторе, северное пассатное течение и противотечение сдвинуты к северу от него так же, как сдвинуты термический экватор, экваториальная зона пониженного давления и, следовательно, пассатные ветры над Океаном.
Северное пассатное течение начинается у Зеленого мыса, пересекает Океан и подходит к Антильским о-вам. Часть его заходит в Карибское море (Карибское течение) и оттуда проникает в Мексиканский залив. Часть воды проходит вдоль Антильских о-вов (Антильское течение) и сливается со сточным Флоридским течением, выходящим из Мексиканского залива.
От слияния Флоридского (более мощного) и Антильского (менее мощного) течений, образуется Гольфстрим, протягивающийся от мыса Гаттерас до Большой Ньюфаундлендской банки.
Гольфстрим представляет собой сравнительно узкую полосу (75-120 км) воды с большими скоростями движения (до 3-10 км/час), отделяющую теплые воды Саргассова моря от холодных вод, идущих с севера. На глубине 1350-1800 м течение очень слабое, а с глубины 2800 м наблюдается движение воды, противоположное поверхностному. Ствол течения состоит из ряда разнонаправленных струй (полос), завихрений, ответвлений. Характерны постоянная пульсация и образование извилин. Изменение скорости течения обнаруживает периодический характер и вызывается изменениями скорости пассатов и западных ветров. Чем интенсивнее пассатная циркуляция, тем меньше скорость Гольфстрима. В зависимости от интенсивности пассатов находится и температура течения. При усилении их температура воды сначала повышается. Это происходит через 3-6 месяцев после усиления северо-восточного пассата и через 6-9 месяцев после усиления юго-восточного пассата, в результате нагона теплой воды в Мексиканский залив. Через 9-11 месяцев после усиления северо-восточного пассата и через 10-12 после усиления юго-восточного пассата наблюдается снижение температуры. Вслед за теплой водой, перемещенной пассатами от берегов Африки, ветры гоняют поднявшуюся с глубины более холодную воду. Средняя годовая температура воды на поверхности Гольфстрима 25-26°, соленость - 36,2-36,4‰.
К юго-востоку от Большой Ньюфаундлендской банки (несколько севернее 40° с. ш. и около 40° з. д.) Гольфстрим заканчивается, распадаясь на ряд струй, направляющихся к югу и к юго-востоку и включающихся в общую антициклоническую циркуляцию вод в этой части Атлантического океана.
У восточный окраины Большой Ньюфаундлендской банки под влиянием западных ветров возникает Северо-Атлантическое течение, продолжающее Гольфстрим на северо-восток. Около 50° с. ш. течение делится на две ветви: северную и южную. Южная ветвь образует Португальское течение. Между Канарскими о-вами и мысом Зеленым воды этого течения сливаются с отличающимися от них по физическим свойствам (в связи с влиянием поднимающихся здесь холодных глубинных вод) водами Канарского течения. У мыса Зеленого Канарское течение вливается в северное пассатное, замыкая субтропическое кольцо течений в северной части Атлантического океана.
Северная (основная) ветвь Северо-Атлантического течения идет к берегам Европы и под названием Норвежского уходит в Северный -Ледовитый океан. Около 60-й параллели от Северо-Атлантического течения (под влиянием рельефа дна) на запад отходит течение Ирмингера. Большая часть его у м. Фарвел присоединяется к Восточно-Гренландскому, образуя вместе с ним Западно-Гренландское течение. Меньшая часть его, обогнув с запада и севера о. Исландию, вливается в Восточно-Исландское течение (ветвь Восточно-Гренландского).
Западно-Гренландское течение, следуя вдоль берега Гренландии, уходит в Баффинов залив. Некоторая часть его проникает в Северный Ледовитый океан. Остальная масса воды этого течения поворачивает на юг и, усиливаясь холодными водами, поступающими через проливы из Арктики, образует Лабрадорское течение. Последнее, встречаясь с Гольфстримом, делится на ряд струй. Западные струи, сливаясь с течением, выходящим из пролива Кабота, идут вдоль берега Северной Америки на юг. Между берегом материка и теплыми водами Гольфстрима всегда находится холодная вода. Температура Лабрадорского течения в январе 0°, в августе 12°. Холодные воды его постепенно уходят вглубь под теплые воды Гольфстрима. Лабрадорское течение приносит к Ньюфаундленской банке айсберги разнообразной формы, спускающиеся к югу до 41° с. ш. (в исключительных случаях южнее).
Южное пассатное течение, наиболее постоянное из всех течений Мирового океана, пересекает Атлантический океан, следуя вдоль экватора, и у берегов Южной Америки делится на Гвианское и Бразильское течения. Гвианское течение вместе с Северным экваториальным несет воду в Карибское море и в Мексиканский залив. Бразильское идет на юг и, отклоняясь к востоку около 40-й параллели, присоединяется к течению Западных ветров. Только небольшая ветвь Бразильского течения продолжает двигаться на юг вдоль берега материка, прижимаясь к нему.
Навстречу Бразильскому течению, проникая между двумя его ветвями (на расстоянии 30-50 км от берега), направляется холодное Фолклендское течение, поворачивающее (после соединения с Бразильским у 35° ю. ш.) на восток. У берегов Африки от течения Западных ветров к северу отходит Бенгельское течение. Им замыкается южное субтропическое кольцо течений в Атлантическом океане.
Экваториальное противотечение в Атлантическом океане на всем протяжении выражено летом, с декабря по март оно сохраняется только на востоке. Продолжение противотечения - Гвинейское течение, соединяющееся с Южным экваториальным течением.
Поверхностные течения в Тихом океане. Северное пассатное течение наблюдается всегда севернее экватора (между 10 и 22° с. ш.). В западной части океана у Филиппинских о-вов оно делится на 3 неравные ветви: одна становится частью межпассатного противотечения, вторая уходит к Зондским о-вам, а третья, самая мощная, образует теплое течение Куросио (аналог Гольфстрима). Близ острова Кюсю от Куросио отходит западная ветвь, проникающая через Цусимский пролив в Японское море - Цусимское течение.
Куросио омывает восточные берега Японских о-вов и у о. Хонсю (около 40-й параллели) поворачивает на восток, переходя в поперечное Ceeepo-Tихоокеанское течение. Около берегов Северной Америки оно делится на Калифорнийское (более мощное) и Аляскинское (менее мощное) течения.
Северное субтропическое кольцо течений в Тихом океане составляют течения: Северное экваториальное - Куросио-Ceвepo-Tихоокеанское - Калифорнийское.
Аляскинское течение, следуя вдоль берегов Аляски и Алеутских о-вов, частично проникает в Берингово море и в Северный Ледовитый океан, частично поворачивает на юг и юго-восток, образуя небольшое кольцо.
Из Берингова моря вдоль берегов Камчатки и гряды Курильских островов двигаются к югу воды холодного Курило-Камчатского течения. Оно постепенно уходит вниз, превращаясь в глубинное течение.
Межпассатное противотечение в Тихом океане существует весь год, но летом в северном полушарии оно смещается к северу и расширяется. На востоке у берегов Америки противотечение делится на две противоположные ветви, вливающиеся в пассатное течение. Летом большая часть противотечения поворачивает на север.
Под поверхностным межпассатным течением в Тихом океане обнаружено противотечение Кромвелла. Оно находится на глубине более 100 м, мощность его достигает приблизительно 200 м, скорость - 1,5 м/сек. Оно проходит с запада на восток более 4,5 тыс. км и исчезает у о-вов Галапагос. Под течением Кромвелла вода снова движется на запад. Существование течений, аналогичных течению Кромвелла, предполагается и в других океанах.
Южное пассатное течение, более устойчивое и сильное, чем Северное, идет с востока на запад близ 23° ю. ш. Около Австралии и Новой Гвинеи оно делится на два течения.
Основная часть его вливается в противотечение, меньшая часть образует Восточно-Австралийское течение. Оно вызывает круговое движение воды на поверхности Тасманова моря, а затем присоединяется к течению Западных ветров. У берегов Южной Америки от течения Западных ветров на север, на соединение с Южным пассатным течением идет мощное Перуанское течение (Гумбольдта). Температура воды на 8-10° ниже температуры воздуха.
Поверхностные течения Индийского океана. Размеры и положение Индийского океана объясняют некоторые отличия его поверхностных течений от течений Атлантического и Тихого океанов.
В северной части Индийского океана, разделенной п-овом Индостан, главное значение приобретают муссонные течения, изменяющие свое направление по сезонам. Постоянного Северного пассатного течения здесь нет, оно выражено только с ноября по март так же, как и межпассатное противотечение.
Южное пассатное течение существует постоянно, но по сравнению с аналогичными течениями двух других океанов оно в соответствии с положением пассатов смещено на 10° к югу.
В западной части океана от Южного пассатного течения ответвляется на юг сначала Мадагаскарское, затем Мозамбикское течение, но основная масса его вод поворачивает на север. Летом она образует Сомалийское течение, зимой дает начало межпассатному противотечению.
Летом, во время юго-западного муссона, в северной части Индийского океана вода движется в общем с запада на восток, зимой же, при северо-восточном муссоне, - с востока на запад. В этот период у берегов Сомали проходит течение, также называемое Сомалийским, но противоположное по направлению летнему Сомалийскому течению.
В южной части Индийского океана (южнее Мадагаскара) Мадагаскарское и Мозамбикское течения, сливаясь, образуют устойчивое Игольное течение, но большая часть воды идет на восток и присоединяется к течению Западных ветров. Игольное течение частично заходит в Атлантический океан, вливаясь в Бенгельское. Течения Западных ветров на юге и Западно-Австралийское на востоке завершают субтропическое кольцо течений в Индийском океане.
Течение Западных ветров, охватывающее южные части трех океанов,- величайшее течение Мирового океана. Ширина его в море Беллинсгаузена - 1300 км. Скорость невелика (на поверхности - 0,2-0,3 м/сек) и с глубиной уменьшается. Чтобы обойти Антарктиду, поверхностным водам нужно 16 лет, глубинным - более 100 лет.
Течения Северного Ледовитого океана. Распределение течений в Северном Ледовитом океане по сравнению с другими океанами отличается большим своеобразием, хотя и зависит также от господствующих ветров.
Сильные ветры, дующие с востока на запад, вдоль северных берегов материка Евразии, и с севера на юг, вдоль восточных берегов Гренландии, вызывают дрейф льдов и поверхностных вод в общем в сторону Атлантического океана. При этом возникает несколько связанных между собой циркуляций: одна в котловине Бофорта - антициклоническая, две в котловине Нансена - антициклоническая (к северу от Гренландии) и циклоническая (к северо-востоку от Новой Земли). Две последние циркуляции способствуют возникновению Восточно-Гренландского течения, выносящего большое количество воды и льдов в Атлантический океан.
Норвежское течение приносит теплую атлантическую воду (145 000 км3/год). У мыса Нордкап оно делится на Нордкапское (35 000 км3/год), уходящее на восток вдоль берега материка, и Шпицбергенское (78000 км3/год), следующее на север и постепенно погружающееся (вследствие сравнительно большой солености) до глубины 100-900 м. Теплая вода этого течения, прижимаясь к материковому склону, двигается на восток и создает промежуточный слой сравнительно теплой (до 2,0-2,5°) воды мощностью до 600 м.
Тихоокеанская вода, проникая через Берингов пролив (44 000 км3/год), самостоятельного течения в Северном Ледовитом океане не образует.
Течения в морях, заливах и проливах. Течения в морях вызываются теми же причинами, что и в океанах, но ограниченность размеров и меньшие глубины определяют масштаб явления, а местные условия придают им своеобразные черты. Для многих морей (Черное, Средиземное и др.) характерно круговое течение, обусловленное отклоняющей силой вращения Земли. В некоторых морях очень хорошо выражены приливо-отливные течения (например, Белое море). Течения в ряде морей (например, в Северном, Карибском) являются ответвлением океанских течений.
По характеру течений проливы можно подразделить (следуя H.Н. Зубову) на проточные и обменные. В проточных проливах течение, как и в реке, направлено в одну сторону (Флоридский пролив). В обменных проливах вода перемещается в двух противоположных направлениях, причем разнонаправленные потоки воды могут находиться один над другим (вертикальный водообмен) или рядом друг с другом (горизонтальный водообмен). Примерами проливов с вертикальным обменом могут быть Босфор и Гибралтарский, с горизонтальным обменом - Лаперузов и Девисов. В нешироких и мелких проливах направление течения может изменяться на противоположное в зависимости от направления ветра (Керченский пролив).
Общая циркуляция Мирового океана. Поверхностные течения - часть сложной и еще очень мало изученной общей циркуляции вод Мирового океана.
Основные причины, обусловливающие перемещение воды,-движение и давление атмосферы, различия в распределении температуры и солености - действуют прежде всего на поверхность Океана. Движение поверхностных вод, вызванное ветром, в общем имеет широтное направление с резкими отклонениями в ту и другую сторону. Под влиянием тепла вода на поверхности Океана перемещается в сторону холода (холодная вода уплотняется и опускается, теплая - расширяется и поднимается), т. е. от экватора к полюсам. В экваториальной области господствует восходящее движение вод, в полярных, наоборот, нисходящее. При термической циркуляции в придонных слоях должно существовать общее перемещение воды от полюсов к экватору.
В областях повышенной солености вода стремится опуститься, в областях пониженной солености, наоборот, подняться (влияние плотности). Соответственно этому возникает горизонтальное перемещение воды в ту или иную сторону.
Существование систем поверхностных течений с общим направлением движения к центру или от центра системы приводит к тому, что в первом случае возникает нисходящее движение воды, во втором - восходящее. Примером таких областей в Океане могут быть субтропические кольцевые системы течений.
Опускание и подъем вод вызывается также нагоном и сгоном «оды на поверхности (например, в области действия пассатов).
Зоны сближения течений (зоны конвергенции) представляют собой области опускания воды, зоны расхождения течений (зоны дивергенции) - области их поднятия.
Так как разные причины, обусловливающие перемещение океанских вод, или совпадают, или оказываются противонаправленными, общая циркуляция их очень усложняется. За основу может быть принята схема термической циркуляции. Если в полярных и умеренных широтах резко преобладает опускание воды, то экваториальная область характеризуется ее поднятием. На поверхности Океана преобладает движение вод от экватора, на глубине - к экватору. Существование течений во всей толще воды, в том числе и в придонных ее слоях, не вызывает в настоящее время сомнений.
Значение океанских течений велико и разнообразно. Хорошо известно большое влияние течений на климат.
Благодаря непрерывному перемещению воды осуществляется постоянный перенос He только тепла и холода, но и питательных веществ, необходимых организмам.
В зонах сходимости течений и опускания воды глубинные слои обогащаются кислородом, в зонах расходимости течений и поднятия воды биогенные вещества (соли фосфора и азота) выносятся с глубин на поверхность. Эти процессы очень важны для развития жизни в Океане.
Течения определяют распространение планктона в открытом Океане и в морях, переносят личинки и мальков рыб из мест нереста в места обитания. Примером могут быть личинки европейского угря, выводящиеся в Саргассовом море и перемещающиеся в пассивном дрейфе (занимающем два-три года) к берегам Европы. При помощи течений перемещаются икра, личинки и мальки трески и сельди; так, например, личинки и мальки трески, появляющиеся у Ньюфаундленда и Лофотенских о-вов, переносятся течением в Норвежское и Баренцево моря.
Поступление теплых и соленых атлантических вод в Северный Ледовитый океан играет большую роль в жизни его морей и имеет значение для рыбных промыслов. Обнаружено, что изменения температуры, количества и содержания солей в атлантических водах испытывают колебания приблизительно с четырехлетним периодом, что заметно отражается на сельдяном промысле.
Изменение направления течений у дальневосточных берегов (отход струй теплого течения) привело к прекращению улова дальневосточной сардины - иваси.
Течения играли огромную роль в эпоху парусного флота и теперь имеют большое значение. Составляют карты течений, описания и таблицы для мореплавателей.

На пляже ввсе спокойно, можно купаться — сигнал красно-желтый флаг

Опасности обратных течений

Надо сказать, что обратные течения существуют в первую очередь на океанских пляжах, где пляжи не защищены рифами. — это в первую очередь пляжи , Легиана и Семиньяка. Если быть точнее это один огромный океанический пляж который растянулся на добрый десяток километров.

Обратное течение

Везде у берегов прилив и отлив сопровождаются течениями, называемыми приливо-отливными. Как правило, приливное течение начинается, когда вода, поднимаясь при приливе, достигла среднего уровня. Течение постепенно нарастает и достигает своего максимума – наибольшей силы в период самого высокого уровня. При отливе течение постепенно убывает и прекращается в момент среднего уровня воды. Далее начинается отливное течение – обратное течение, которое достигает своего максимума в самую малую воду и затем постепенно уменьшается и прекращается, когда уровень воды достигает среднего положения.

Приливы, приливные течения и волны образуют самое опасное явление Rip Current – обратное течение. Обратное течение является причиной 90-95 процентов случаев всех утоплений на морях и океанах. Rip current встречаются на всех без исключения океанских пляжах и на пляжах крупных морей.

В океане большие волны. Спасатели предупреждают

Что такое обратное течение и как оно образуется?

Когда на море прилив (все о приливах на Бали в статье « ») и волны постоянно накатываются на берег, вода не успевает уходить в море, но так как этот процесс необходим, то и возникают «коридоры» с сильным обратным течением по которым вся вода быстро уходит в море. Такие «коридоры» образуются непосредственно у берега и уходят в море.

Бывают коридоры с обратным течением устойчивые, они всегда возникают в одних и тех же местах, и не так опасны, потому что, как правило, про них знают все местные и подсказывают, куда не нужно ходить купаться. Но бывают так называемые flash rip currents, которые приходят и уходят, не имеют постоянной локализации, возникают спонтанно, то в одном месте, то в другом и с новым циклом прилива-отлива меняют свое местоположение. Такие рипы – обратные течения как раз и представляют смертельную опасность. Размеры «коридора» такого обратного течения обусловлены, величиной прилива, силой волн и рельефом дна. Частот коридор не широкий, всего 3-4 метра, и из него несложно выйти в одну или другую сторону. И скорость течения в большинстве рипов небольшая – около 5 км/ч, что не очень опасно. Однако на одном и том же пляже могут возникать обратные течения шириной до 50 метров! И если к этому еще добавить скорость в 15-20 км/ч, то, попав в такое обратное течение, если ты не знаешь, как с ним справиться и как необходимо поступать, то придется положиться только на Господа Бога.

Самое опасное то, что рип может возникнуть непосредственно у берега, где глубина по пояс и отдыхающие не могут и подумать о какой-либо угрозе утопления на такой глубине, но вдруг вы ощущаете сильнейшее течение, вас буквально приподнимает и с силой тянет в море. Все это происходит в десятке метров от ваших друзей, на глазах всех отдыхающих. Человек начинает усиленно бороться, но со стороны всем, кажется, что вы просто балуетесь. С таким сильнейшим течением бороться бесполезно, быстро кончаются силы, и конец может быть очень печальным. Самое опасное в обратном течении, то что оно может возникнуть практически внезапно и на небольшой глубине. Самая коварная глубина для неумеющих плавать — по грудь. Именно на такой глубине мы еще чувствуем дно, берег кажется рядом и ничего не может случиться, но именно на этой же глубине заканчивается жесткое сцепление с дном, тело в воде становится намного легче, и даже не при сильном течении, встать на ноги вы уже не сможете. Рипы – очень реальная опасность.

Что происходит, когда человек попадает в обратное течение? Его начитает тащить в открытый океан. Если рип широкий и скорость даже небольшая -5 км/ч, то сопротивляться бесполезно. Как раз и происходит такое обстоятельство, что люди, не знающие про обратное течение, начинают отчаянно сопротивляться и пытаться плыть именно в сторону берега, то есть против течения. У них, естественно, ничего не получается, возникает паника, быстро кончаются силы. С обратным течением не справляются спортсмены пловцы, в рипах немало утонуло атлетов, что уж говорить об обычных не подготовленных отдыхающих.

В следующей статье « » мы расскажем о правилах поведения при возникновении обратных течений, какие флаги и сигналы ставятся на пляжах и как их надо понимать.