Основные понятия классической теории вероятности. Что изучает теория вероятностей

Теория вероятностей – это раздел математики, изучающий закономерности массовых однородных случайных явлений.

Основными исходными понятиями в теории вероятностей являются понятия испытания (опыта) и события . Всякое действие, результат которого фиксируется, называется испытанием (опытом), а результат испытания или испытаний называется событием. Будем говорить, что в результате испытания или испытаний происходит (наступает) событие.

Пример 1 . Подбросим над столом монету. При этом возможны два результата: монета упадёт на стол и на верхней её грани будет «герб» или же на верхней грани монеты будет «цифра». В этом случае будем говорить: выпал «герб» или выпала «цифра». В данном примере подбрасывание монеты является испытанием, а выпадение «герба» или выпадение «цифры» являются событиями, т.е. в результате подбрасывания монеты может произойти одно из двух рассмотренных событий.

Пример 2 . Подбросим монету два раза подряд. При этом возможны следующие события: {оба раза выпал «герб»}, {оба раза выпала «цифра»}, {первый раз выпал «герб», а второй раз – «цифра»}, {первый раз выпала «цифра», а второй раз – «герб»}.

Все рассматриваемые события можно подразделить на достоверные, невозможные и случайные .

Событие называется достоверным , если при данном испытании оно обязательно произойдёт. Событие называется невозможным , если при данном испытании оно не может произойти. Случайным называется событие, которое при данном испытании может произойти или не произойти.

Пример 3 . В урне находятся только красные шары. Проведём испытание – извлечём из урны один шар. Событие {извлечён красный шар} является достоверным, так как в урне только красные шары. Событие {извлечён белый шар} является невозможным, так как в урне нет белых шаров.

Пример 4 . Стрелок произвёл один выстрел по мишени. При этом может произойти одно из двух событий: {есть попадание в мишень} или {нет попадания в мишень}. Оба эти события случайные.

Случайные события принято обозначать заглавными буквами латинского алфавита A, B, C, …; достоверные события – буквой U и невозможные – буквой V .

Случайные события подразделяются на совместные, несовместные и единственно возможные .

События называются совместными , если при одном и том же испытании наступление одного из них не исключает наступление других, т.е. они могут произойти совместно.

События называются несовместными , если при одном и том же испытании наступление одного из них исключает наступление других, т.е. они не могут произойти совместно.

Пример 5 . По цели стреляют два стрелка. Обозначим события:

А = {первый стрелок попал в цель};

В = {второй стрелок попал в цель}.

События А и В будут совместными, так как попадание одного из стрелков в цель не исключает попадание другого.

Пример 6 . Подбрасывается монета. В результате могут произойти события:

А = {выпал «герб»};

В = {выпала «цифра»}.

События А и В несовместны, так как наступление одного из них исключает наступление другого.

События называются единственно возможными , если при данном испытании произойдёт хотя бы одно из них. Два единственно возможные и несовместные события называются противоположными . Если А – некоторое событие, то ему противоположное обозначается . Совокупность единственно возможных и несовместных событий образует полную группу событий .

Пример 7 . В урне находятся белые, чёрные и красные шары. Из урны извлекается один шар. Обозначим события:

А = {извлечён белый шар};

В = {извлечён чёрный шар};

С = {извлечён красный шар}.

События А, В, С являются единственно возможными.

Пример 8 . Стрелок выстрелил по цели. Обозначим события:

А = {есть попадание в цель};

= {нет попадания в цель}.

Эти события являются противоположными.

Пример 9 . Бросается игральный кубик, на гранях которого написаны цифры 1, 2, 3, 4, 5 и 6. Эти цифры обозначают число очков. При бросании кубика на верхней его грани выпадет одна из этих цифр. Обозначим события.

Опытом , или испытанием , называют всякое осуществление определенного комплекса условий или действий, при которых происходит соответствующее явление. Возможный результат опыта называют событием . Например, опытом является подбрасывание монеты, а событиями "герб", "цифра на верхней ее стороне" (когда монета упадет). Опытами являются стрельба по мишени, извлечение шара из ящика и т.п. События будем обозначать заглавными буквами латинского алфавита А, В, С, ...

Событие называется достоверным в данном опыте, если оно обязательно произойдет в этом опыте. Например, если в ящике находятся только голубые шары, то событие "из ящика извлечен голубой шар" является достоверным (в ящике нет шаров другого цвета).

Событие называется невозможным в данном опыте, если оно не может произойти в этом опыте. Так, если в ящике находятся только красные шары, то событие "из ящика извлечен голубой шар" является невозможным (таких шаров в ящике нет).

Событие называется случайным в данном опыте, если оно может произойти, а может и не произойти в этом опыте. Например, если в ящике находятся n голубых и m красных шаров, одинаковы по размеру и весу, то событие "из урны извлечен голубой шар" является случайным (оно может произойти, а может и не произойти, поскольку в урне имеются не только голубые, но и красные шары). Случайными событиями являются "герб" и "цифра на верхней стороне монеты при ее подбрасывании", "попадание и промах при стрельбе по мишени", "выигрыш по билету лотереи" и т.п.
З а м е ч а н и е. Приведенные примеры свидетельствуют о том, что одно и то же событие в некотором опыте может быть достоверным, в другом - невозможным, в третьем - случайным. Говоря о достоверности, невозможности, случайности события, имеют в виду его достоверность, невозможность, случайность по отношению к конкретному опыту, то есть к наличию определенного комплекса условий или действий.

Два события называются совместными в данном опыте, если появление одного из них не исключает, появление другого в этом опыте. Так, при подбрасывании двух симметричных монет, события А - "герб на верхней стороне первой монеты" и В - "цифра на верхней стороне второй монеты" являются совместными.

Два события называются несовместными , если они не могут произойти вместе при одном и том же испытании. Например, несовместными являются попадание и промах при одном выстреле. Несколько событий называются несовместными, если они попарно- несовместны.

Два события называются противоположными , если появление одного из них равносильно непоявлению другого. Так, противоположными являются события "герб" и "цифра" при одном подбрасывании симметричной монеты. Если одно из противоположных событий обозначено буквой А, то другое обозначают . Например, если А - "попадание", то - "промах" при одном выстреле по мишени.

Множество событий A 1 , А 2 , ... , А n называют полной группой событий , если они попарно-несовместны; появление одного и только одного из них является достоверным событием. Поясним понятие полной группы событий на следующем примере. Рассмотрим события, появляющиеся при подбрасывании игрального кубика (то есть кубика, на гранях которого записаны цифры 1, 2, 3, 4, 5, 6 или изображены знаки, соответствующие этим цифрам). Когда кубик упадет, то верхней гранью окажется грань с одной из этих цифр. Событие: "верхней гранью оказалась грань с цифрой k" обозначим через A k (k = 1, 2, 3, 4, 5, 6). События А 1 , А 2 , А 3 , А 4 , А 5 , А 6 образуют полную группу: они попарно-несовместны; появление одного и только одного из них является достоверным событием (когда кубик упадет, то только одна из граней окажется верхней, на ней написана только одна из цифр от 1 до 6).

События считают равновозможными , если нет оснований полагать, что одно событие является более возможным, чем другие. Например, при подбрасывании монеты событие А (появление цифры) и событие В (появление герба) равновозможны, так как предполагается, что монета изготовлена из однородного материала, имеет правильную цилиндрическую форму и наличие чеканки не влияет на то, какая сторона монеты (герб или цифра) окажется верхней. При подбрасывании игрального кубика события A 1 , А 2 , А 3 , А 4 , А 5 , А 6 являются равновозможными, поскольку предполагается, что кубик изготовлен из однородного материала, имеет правильную форму и наличие цифр (или очков) на гранях не влияет на то, какая из шести граней окажется верхней. Каждое событие, которое может наступить в итоге опыта, называется элементарным исходом (элементарным событием, или шансом).

Например, события A 1 , А 2 , А 3 , А 4 , А 5 , А 6 - элементарные исходы при подбрасывании кубика. Элементарные исходы, при которых данное событие наступает, называются благоприятствующими этому событию, или благоприятными шансами. Так, при подбрасывании игрального кубика элементарные исходы А 2 , А 4 , А 6 являются благоприятствующими событию "выпало четное число очков".

Пример 1.

Подбрасываются два игральных кубика, подсчитываются суммы выпавших очков (суммы числа очков на верхних гранях обоих кубиков). Сумма выпавших очков на двух кубиках может меняться от 2 до 12. Записать полную группу событий в этом опыте.

Решение.

Полную группу событий образуют равновозможные элементарные исходы (k ; m ), k , m = 1, 2, 3, 4, 5, 6, представленные в таблице. Элементарный исход (k ; m ) означает, что на первом кубике выпало k очков, на втором m очков (k , m = 1,2,3,4,5,6). Например, (3; 4) - на первом кубике 3 очка, на втором - 4 очка.

(1;1) (2;1) (3;1) (4;1) (5;1) (6;1)
(1;2) (2;2) (3;2) (4;2) (5;2) (6;2)
(1;3) (2;3) (3;3) (4;3) (5;3) (6;3)
(1;4) (2;4) (3;4) (4;4) (5;4) (6;4)
(1;5) (2;5) (3;5) (4;5) (5;5) (6;5)
(1;6) (2;6) (3;6) (4;6) (5;6) (6;6)

Пример 2.

Сколько элементарных исходов благоприятствует событию "на обоих кубиках выпало одинаковое число очков" при подбрасывании двух игральных кубиков?

Решение.

Этому событию благоприятствуют 6 элементарных исходов (смотрите таблицу из примера 1): (1;1), (2;2), (3;3), (4;4), (5;5), (6;6).

Пример 3.

Подбрасывается два игральных кубика. Какому событию благоприятствует больше элементарных исходов: "сумма выпавших очков равна 7", "сумма выпавших очков равна 8"?

Решение.

Событию "сумма выпавших очков равна 7" благоприятствуют 6 исходов (см. табл. примера 1): (1;6), (2;5), (3;4), (4;3), (5;2), (6;1). Событию "сумма выпавших очков равна 8" благоприятствуют 5 исходов: (2;6), (3;5), (4;4), (5;3), (6;2). Следовательно, первому событию благоприятствует больше элементарных исходов.

Пример 4.

Подбрасываются три игральных кубика, подсчитываются суммы очков, выпавших на них. Сколькими способами можно получить в сумме 5 очков, 6 очков?

Решение.

Получить в сумме 5 очков можно шестью способами: (1; 1; 3), (1; 3; 1), (3; 1; 1), (1; 2; 2), (2; 1; 2), (2; 2; 1). Получить в сумме 6 очков можно десятью способами: (1; 1; 4), (1; 4; 1), (4; 1; 1), (1; 2; 3), (1; 3; 2), (2; 1; 3), (2; 3; 1), (3; 1; 2), (3; 2; 1), (2; 2; 2).
З а м е ч а н и е. Запись (3; 2; 1) означает, что на первом кубике выпало 3 очка, на втором - 2 очка, на третьем - 1 очко.

Задачи

1. Являются ли несовместными следующие события:

б) опыт - два выстрела по мишени; события: А - "хотя бы одно попадание"; В - "хотя бы один промах".

2. Являются ли равновозможными следующие события:
а) опыт - подбрасывание симметричной монеты; события: А -"появление герба", В - "появление цифры";
б) опыт - подбрасывание погнутой монеты; события: А - "появление герба", В - "появление цифры";
в) опыт - выстрел по мишени; события: А - "попадание", В - "промах".

3. Образуют ли полную группу событий следующие события:
а) опыт - подбрасывание симметричной монеты; события: А - "герб", В - "цифра";
б) опыт - подбрасывание двух симметричных монет; события: А - "два герба", В - "две цифры".

4. Опыт - подбрасывание двух игральных кубиков. Сколько элементарных исходов благоприятствуют событию - выпало очков: 2, 3, 4, 5, 6, 7,8,9,10,11,12?

5. Опыт - подбрасывание трех игральных кубиков. Сколько всего элементарных исходов? Сколько элементарных исходов благоприятствуют событию - на трех кубиках выпало очков: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12? Каково наибольшее значение суммы выпавших очков?

Ответы

1. а) да; б) нет. 2 . а) да; б) нет; в) в общем случае нет. 3 . а) да; б) нет. 4 . 1,2,3,4,5,6,5,4, 3, 2, 1. 5 . n=216; 1, 3, 6, 10, 15, 21, 25, 27, 27, 25; 18.

Вопросы

1. Что называют опытом, или испытанием?
2. Что называют событием?
3. Какое событие называют достоверным в данном опыте?
4. Какое событие называют невозможным в данном опыте?
5. Какое событие называют случайным в данном опыте?
6. Какие события называют совместными в данном опыте?
7. Какие события называют несовместными в данном опыте?
8. Какие события называют противоположными?
9. Какие события считают равно возможными?
10. Что называют полной группой событий?
11. Что называют элементарным исходом?
12. Какие элементарные исходы называют благоприятствующими данному событию?
13. Что представляет собой полная группа событий при подбрасывании одной монеты?
14. Что представляет собой полная группа событий при подбрасывании двух монет?

План.

1. Случайная величина (СВ) и вероятность события.

2. Закон распределения СВ.

3. Биномиальное распределение (распределение Бернулли).

4. Распределение Пуассона.

5. Нормальное (гауссовское) распределение.

6. Равномерное распределение.

7. Распределение Стьюдента.

2.1 Случайная величина и вероятность события

Математическая статистика тесно связана с другой математической наукой – теорией вероятности и базируется на ее математическом аппарате.

Теория вероятности – это наука, которая изучает закономерности, порожденные случайными событиями.

Педагогические явления относятся к числу массовых: они охватывают большие совокупности людей, повторяются из года в год, совершаются непрерывно. Показатели (параметры, результаты) педагогического процесса имеют вероятностный характер: одно и то же педагогическое воздействие может приводить к различным следствиям (случайные события, случайным величинам). Тем не менее, при многократном воспроизведении условий определенные следствия появляются чаще других, - это и есть проявление так называемых статистических закономерностей (изучением которых занимаются теория вероятностей и математическая статистика).

Случайная величина (СВ) – это численная характеристика, измеряемая по ходу опыта и зависящая от случайного исхода. СВ реализуемая по ходу опыта и сама является случайной. Каждая СВ задает распределение вероятностей.

Основным свойством педагогических процессов, явлений служит их вероятностный характер (при данных условиях они могут произойти, реализоваться, но могут и не произойти). Для таких явлений существенную роль играет понятие вероятности.

Вероятность (Р) показывает степень возможности осуществления данного события, явления, результата. Вероятность невозможного события равна нулю p = 0, достоверного - единице p = 1 (100%). Вероятность любого события лежит в пределах от 0 до 1, в зависимости от того, насколько это событие случайно.

Если мы интересуемся событием A, то, скорее всего, можем наблюдать, фиксировать факты его появления. Потребность в понятии вероятности и ее вычисления возникнет, очевидно, только тогда, когда мы наблюдаем это событие не каждый раз, либо осознаем, что оно может произойти, а может не произойти. И в том и другом случае полезно использовать понятие частоты появления события f(A) - как отношения числа случаев его появления (благоприятных исходов) к общему числу наблюдений. Частота наступления случайного события зависит не только от степени случайности самого события, но и от числа (количества) наблюдений за этой СВ.

Существует два вида выборок СВ: зависимые и независимые . Если результаты измерения некоторого свойства у объектов первой выборки не оказывают влияния на результаты измерения этого свойства у объектов второй выборки, то такие выборки считаются независимыми. В тех случаях, когда результаты одной выборки влияют на результаты другой выборки, выборки считают зависимыми . Классический способ получения зависимых измерений – это двукратное измерение одного и того же свойства (или разных свойств) у членов одной и той же группы.

Событие А не зависит от события В, если вероятность события А не зависит от того произошло или нет событие В. События А и В независимы, если Р(АВ)=Р(А)Р(В). На практике независимость события устанавливается из условий опыта, интуиции исследователя и практики.

СВ бывает дискретной (мы можем пронумеровать ее возможные значения), например, выпадение игральной кости = 4, 6, 2, и непрерывной (ее функция распределения F(x) – непрерывна), например, время службы лампочки.

Математическое ожидание – числовая характеристика СВ, приближенно равная среднему значению СВ:

M(x)=x 1 p 1 +x 2 p 2 +…+x n p n

2.2 Закон распределения СВ

Подчиняются ли каким-либо законам явления, носящие случайный характер? Да, но эти законы отличаются от привычных нам физических законов. Значения СВ невозможно предугадать даже при известных условиях эксперимента, мы можем лишь указать вероятности того, что СВ примет то или иное значение. Зато зная распределение вероятностей СВ, мы можем делать выводы о событиях, в которых участвуют эти случайные величины. Правда, эти выводы будут также носить вероятностный характер.

Пусть некоторая СВ является дискретной, т.е. может принимать лишь фиксированные значения X i . В этом случае ряд значений вероятностей P(X i) для всех (i=1…n) допустимых значений этой величины называют её законом распределения.

Закон распределения СВ - это отношение, устанавливающее связь между возможными значениями СВ и вероятностями, с которыми принимаются эти значения. Закон распределения полностью характеризует СВ.

При построении математической модели для проверки статистической гипотезы необходимо ввести математическое предположение о законе распределения СВ (параметрический путь построения модели).

Непараметрический подход к описанию математической модели (СВ не имеет параметрического закона распределения) менее точен, но имеет более широкую область применения.

Точно также, как и для вероятности случайного события, для закона распределения СВ есть только два пути его отыскания. Либо мы строим схему случайного события и находим аналитическое выражение (формулу) вычисления вероятности (возможно, кто–то уже сделал или сделает это до вас!), либо придется использовать эксперимент и по частотам наблюдений делать какие–то предположения (выдвигать гипотезы) о законе распределения.

Конечно же, для каждого из "классических" распределений уже давно эта работа проделана ­– широко известными и очень часто используемыми в прикладной статистике являются биномиальное и полиномиальное распределения, геометрическое и гипергеометрическое, распределение Паскаля и Пуассона и многие другие.

Для почти всех классических распределений немедленно строились и публиковались специальные статистические таблицы, уточняемые по мере увеличения точности расчетов. Без использования многих томов этих таблиц, без обучения правилам пользования ими последние два столетия практическое использование статистики было невозможно.

Сегодня положение изменилось – нет нужды хранить данные расчетов по формулам (как бы последние не были сложны!), время на использование закона распределения для практики сведено к минутам, а то и секундам. Уже сейчас существует достаточное количество разнообразных пакетов прикладных компьютерных программ для этих целей.

Среди всех вероятностных распределений есть такие, которые используются на практике особенно часто. Эти распределения детально изучены и свойства их хорошо известны. Многие из этих распределений лежат в основе целых областей знаний – таких, как теория массового обслуживания, теория надежности, контроль качества, теория игр и т.п.

2.3 Биномиальное распределение (распределение Бернулли)

Возникает в тех случаях, когда ставится вопрос: сколько раз происходит некоторое событие в серии из определенного числа независимых наблюдений (опытов), выполняемых в одинаковых условиях.

Для удобства и наглядности будем полагать, что нам известна величина p – вероятность того, что вошедший в магазин посетитель окажется покупателем и (1– p) = q – вероятность того, что вошедший в магазин посетитель не окажется покупателем.

Если X – число покупателей из общего числа n посетителей, то вероятность того, что среди n посетителей оказалось k покупателей равна

P(X= k) = , где k=0,1,…n (1)

Формулу (1) называют формулой Бернулли. При большом числе испытаний биномиальное распределение стремиться к нормальному.

2.4 Распределение Пуассона

Играет важную роль в ряде вопросов физики, теории связи, теории надежности, теории массового обслуживания и т.д. Всюду, где в течение определенного времени может происходить случайное число каких-то событий (радиоактивных распадов, телефонных вызовов, отказов оборудования, несчастный случаях и т.п.).

Рассмотрим наиболее типичную ситуацию, в которой возникает распределение Пуассона. Пусть некоторые события (покупки в магазине) могут происходить в случайные моменты времени. Определим число появлений таких событий в промежутке времени от 0 до Т.

Случайное число событий, происшедших за время от 0 до Т, распределено по закону Пуассона с параметром l=аТ, где а>0 – параметр задачи, отражающий среднюю частоту событий. Вероятность k покупок в течение большого интервала времени, (например, – дня) составит

P(Z=k) =

(2)


2.5 Нормальное (гауссовское) распределение

Нормальное (гауссовское) распределение занимает центральное место в теории и практике вероятностно-статистических исследований. В качестве непрерывной аппроксимации к биномиальному распределению его впервые рассматривал А.Муавр в 1733 г. Через некоторое время нор­мальное распределение снова открыли и изучили К.Гаусс (1809 г.) и П.Лаплас, которые пришли к нормальной функции в связи с ра­ботой по теории ошибок наблюдений.

Непрерывная случайная величина Х называется распределенной по нормальному закону , если ее плотность распределения равна

где


совпадает с математическим ожиданием величины Х:
=М(Х), параметр s совпадает со средним квадратическим отклонением величины Х: s =s(Х). График функции нормального распределения, как видно из рисунка, имеет вид куполо­образной кривой, называемой Гауссовой, точка максимума имеет координаты (а;

Эта кривая при μ=0, σ=1 получила статус стандарта, ее называют единичной нормальной кривой, то есть любые собранные данные стремятся преобразовать так, чтобы кривая их распределения была максимально близка к этой стандартной кривой.

Нормализованную кривую изобрели для решения задач теории вероятности, но оказалось на практике, что она отлично аппроксимирует распределение частот при большом числе наблюдений для множества переменных. Можно предположить, что не имея материальных ограничений на количество объектов и время проведения эксперимента, статистическое исследование приводится к нормально кривой.

2.6 Равномерное распределение

Равномерное распределение вероятностей является простейшим и может быть как дискретным, так и непрерывным. Дискретное равномерное распределение – это такое распределение, для которого вероятность каждого из значений СВ одна и та же, то есть:

где N – количество возможных значений СВ.

Распределение вероятностей непрерывной CВ Х, принимающие все свои значения из отрезка [а;b] называется равномерным, если ее плотность вероятности на этом отрезке постоянна, а вне его равна нулю:

(5)

2.7 Распределение Стьюдента

Это распределение связано с нормальным. Если СВ x 1 , x 2 , … x n – независимы, и каждая из них имеет стандартное нормальное распределение N(0,1), то СВ имеет распределение, называемое распределением Стьюдента :

Изначально, будучи всего лишь собранием сведений и эмпирических наблюдений за игрой в кости, теория вероятности стала основательной наукой. Первыми, кто придал ей математический каркас, были Ферма и Паскаль.

От размышлений о вечном до теории вероятностей

Две личности, которым теория вероятностей обязана многими фундаментальными формулами, Блез Паскаль и Томас Байес, известны как глубоко верующие люди, последний был пресвитерианским священником. Видимо, стремление этих двух ученых доказать ошибочность мнения о некой Фортуне, дарующей удачу своим любимчикам, дало толчок к исследованиям в этой области. Ведь на самом деле любая азартная игра с ее выигрышами и проигрышами — это всего лишь симфония математических принципов.

Благодаря азарту кавалера де Мере, который в равной степени был игроком и человеком небезразличным к науке, Паскаль вынужден был найти способ расчета вероятности. Де Мере интересовал такой вопрос: "Сколько раз нужно выбрасывать попарно две кости, чтобы вероятность получить 12 очков превышала 50%?". Второй вопрос, крайне интересовавший кавалера: "Как разделить ставку между участниками незаконченной игры?" Разумеется, Паскаль успешно ответил на оба вопроса де Мере, который стал невольным зачинателем развития теории вероятностей. Интересно, что персона де Мере так и осталась известна в данной области, а не в литературе.

Ранее ни один математик еще не делал попыток вычислять вероятности событий, поскольку считалось, что это лишь гадательное решение. Блез Паскаль дал первое определение вероятности события и показал, что это конкретная цифра, которую можно обосновать математическим путем. Теория вероятностей стала основой для статистики и широко применяется в современной науке.

Что такое случайность

Если рассматривать испытание, которое можно повторить бесконечное число раз, тогда можно дать определение случайному событию. Это один из вероятных исходов опыта.

Опытом является осуществление конкретных действий в неизменных условиях.

Чтобы можно было работать с результатами опыта, события обычно обозначают буквами А, B, C, D, Е…

Вероятность случайного события

Чтобы можно было приступить к математической части вероятности, нужно дать определения всем ее составляющим.

Вероятность события - это выраженная в числовой форме мера возможности появления некоторого события (А или B) в результате опыта. Обозначается вероятность как P(A) или P(B).

В теории вероятностей отличают:

  • достоверное событие гарантированно происходит в результате опыта Р(Ω) = 1;
  • невозможное событие никогда не может произойти Р(Ø) = 0;
  • случайное событие лежит между достоверным и невозможным, то есть вероятность его появления возможна, но не гарантирована (вероятность случайного события всегда в пределах 0≤Р(А)≤ 1).

Отношения между событиями

Рассматривают как одно, так и сумму событий А+В, когда событие засчитывается при осуществлении хотя бы одного из составляющих, А или В, или обоих - А и В.

По отношению друг к другу события могут быть:

  • Равновозможными.
  • Совместимыми.
  • Несовместимыми.
  • Противоположными (взаимоисключающими).
  • Зависимыми.

Если два события могут произойти с равной вероятностью, то они равновозможные .

Если появление события А не сводит к нулю вероятность появление события B, то они совместимые.

Если события А и В никогда не происходят одновременно в одном и том же опыте, то их называют несовместимыми . Бросание монеты - хороший пример: появление решки - это автоматически непоявление орла.

Вероятность для суммы таких несовместимых событий состоит из суммы вероятностей каждого из событий:

Р(А+В)=Р(А)+Р(В)

Если наступление одного события делает невозможным наступление другого, то их называют противоположными. Тогда одно из них обозначают как А, а другое - Ā (читается как «не А»). Появление события А означает, что Ā не произошло. Эти два события формируют полную группу с суммой вероятностей, равной 1.

Зависящие события имеют взаимное влияние, уменьшая или увеличивая вероятность друг друга.

Отношения между событиями. Примеры

На примерах гораздо проще понять принципы теории вероятностей и комбинации событий.

Опыт, который будет проводиться, заключается в вытаскивании шариков из ящика, а результата каждого опыта - элементарный исход.

Событие - это один из возможных исходов опыта - красный шар, синий шар, шар с номером шесть и т. д.

Испытание №1. Участвуют 6 шаров, три из которых окрашены в синий цвет, на них нанесены нечетные цифры, а три других - красные с четными цифрами.

Испытание №2. Участвуют 6 шаров синего цвета с цифрами от одного до шести.

Исходя из этого примера, можно назвать комбинации:

  • Достоверное событие. В исп. №2 событие «достать синий шар» достоверное, поскольку вероятность его появления равна 1, так как все шары синие и промаха быть не может. Тогда как событие «достать шар с цифрой 1» - случайное.
  • Невозможное событие. В исп. №1 с синими и красными шарами событие «достать фиолетовый шар» невозможное, поскольку вероятность его появления равна 0.
  • Равновозможные события. В исп. №1 события «достать шар с цифрой 2» и «достать шар с цифрой 3» равновозможные, а события «достать шар с четным числом» и «достать шар с цифрой 2» имеют разную вероятность.
  • Совместимые события. Два раза подряд получить шестерку в процессе бросания игральной кости - это совместимые события.
  • Несовместимые события. В том же исп. №1 события «достать красный шар» и «достать шар с нечетным числом» не могут быть совмещены в одном и том же опыте.
  • Противоположные события. Наиболее яркий пример этого - подбрасывание монет, когда вытягивание орла равносильно невытягиванию решки, а сумма их вероятностей - это всегда 1 (полная группа).
  • Зависимые события . Так, в исп. №1 можно задаться целью извлечь два раза подряд красный шар. Его извлечение или неизвлечение в первый раз влияет на вероятность извлечения во второй раз.

Видно, что первое событие существенно влияет на вероятность второго (40% и 60%).

Формула вероятности события

Переход от гадательных размышлений к точным данным происходит посредством перевода темы в математическую плоскость. То есть суждения о случайном событии вроде "большая вероятность" или "минимальная вероятность" можно перевести к конкретным числовым данным. Такой материал уже допустимо оценивать, сравнивать и вводить в более сложные расчеты.

С точки зрения расчета, определение вероятности события - это отношение количества элементарных положительных исходов к количеству всех возможных исходов опыта относительно определенного события. Обозначается вероятность через Р(А), где Р означает слово «probabilite», что с французского переводится как «вероятность».

Итак, формула вероятности события:

Где m - количество благоприятных исходов для события А, n - сумма всех исходов, возможных для этого опыта. При этом вероятность события всегда лежит между 0 и 1:

0 ≤ Р(А)≤ 1.

Расчет вероятности события. Пример

Возьмем исп. №1 с шарами, которое описано ранее: 3 синих шара с цифрами 1/3/5 и 3 красных с цифрами 2/4/6.

На основании этого испытания можно рассматривать несколько разных задач:

  • A - выпадение красного шара. Красных шаров 3, а всего вариантов 6. Это простейший пример, в котором вероятность события равна Р(А)=3/6=0,5.
  • B - выпадение четного числа. Всего четных чисел 3 (2,4,6), а общее количество возможных числовых вариантов - 6. Вероятность этого события равна Р(B)=3/6=0,5.
  • C - выпадение числа, большего, чем 2. Всего таких вариантов 4 (3,4,5,6) из общего количества возможных исходов 6. Вероятность события С равна Р(С)=4/6=0,67.

Как видно из расчетов, событие С имеет большую вероятность, поскольку количество вероятных положительных исходов выше, чем в А и В.

Несовместные события

Такие события не могут одновременно появиться в одном и том же опыте. Как в исп. №1 невозможно одновременно достать синий и красный шар. То есть можно достать либо синий, либо красный шар. Точно так же в игральной кости не могут одновременно появиться четное и нечетное число.

Вероятность двух событий рассматривается как вероятность их суммы или произведения. Суммой таких событий А+В считается такое событие, которое состоит в появлении события А или В, а произведение их АВ - в появлении обоих. Например, появление двух шестерок сразу на гранях двух кубиков в одном броске.

Сумма нескольких событий являет собой событие, предполагающее появление, по крайней мере, одного из них. Произведение нескольких событий - это совместное появление их всех.

В теории вероятности, как правило, употребление союза "и" обозначает сумму, союза "или" - умножение. Формулы с примерами помогут понять логику сложения и умножения в теории вероятностей.

Вероятность суммы несовместных событий

Если рассматривается вероятность несовместных событий, то вероятность суммы событий равна сложению их вероятностей:

Р(А+В)=Р(А)+Р(В)

Например: вычислим вероятность того, что в исп. №1 с синими и красными шарами выпадет число между 1 и 4. Рассчитаем не в одно действие, а суммой вероятностей элементарных составляющих. Итак, в таком опыте всего 6 шаров или 6 всех возможных исходов. Цифры, которые удовлетворяют условие, - 2 и 3. Вероятность выпадения цифры 2 составляет 1/6, вероятность цифра 3 также 1/6. Вероятность того, что выпадет цифра между 1 и 4 равна:

Вероятность суммы несовместимых событий полной группы равна 1.

Так, если в опыте с кубиком сложить вероятности выпадения всех цифр, то в результате получим единицу.

Также это справедливо для противоположных событий, например в опыте с монетой, где одна ее сторона - это событие А, а другая - противоположное событие Ā, как известно,

Р(А) + Р(Ā) = 1

Вероятность произведения несовместных событий

Умножение вероятностей применяют, когда рассматривают появление двух и более несовместных событий в одном наблюдении. Вероятность того, что в нем появятся события A и B одновременно, равна произведению их вероятностей, или:

Р(А*В)=Р(А)*Р(В)

Например, вероятность того, что в исп. №1 в результате двух попыток два раза появится синий шар, равна

То есть вероятность наступления события, когда в результате двух попыток с извлечением шаров будет извлечены только синие шары, равна 25%. Очень легко проделать практические эксперименты этой задачи и увидеть, так ли это на самом деле.

Совместные события

События считаются совместными, когда появление одного из них может совпасть с появлением другого. Несмотря на то что они совместные, рассматривается вероятность независимых событий. К примеру, бросание двух игральных костей может дать результат, когда на обеих из них выпадает цифра 6. Хотя события совпали и появились одновременно, они независимы друг от друга - могла выпасть всего одна шестерка, вторая кость на нее влияния не имеет.

Вероятность совместных событий рассматривают как вероятность их суммы.

Вероятность суммы совместных событий. Пример

Вероятность суммы событий А и В, которые по отношению к друг другу совместные, равняется сумме вероятностей события за вычетом вероятности их произведения (то есть их совместного осуществления):

Р совместн. (А+В)=Р(А)+Р(В)- Р(АВ)

Допустим, что вероятность попадания в мишень одним выстрелом равна 0,4. Тогда событие А - попадание в мишень в первой попытке, В - во второй. Эти события совместные, поскольку не исключено, что можно поразить мишень и с первого, и со второго выстрела. Но события не являются зависимыми. Какова вероятность наступления события поражения мишени с двух выстрелов (хотя бы с одного)? Согласно формуле:

0,4+0,4-0,4*0,4=0,64

Ответ на вопрос следующий: "Вероятность попасть в цель с двух выстрелов равна 64%".

Эта формула вероятности события может быть применима и к несовместным событиям, где вероятность совместно появления события Р(АВ) = 0. Это значит, что вероятность суммы несовместных событий можно считать частным случаем предложенной формулы.

Геометрия вероятности для наглядности

Интересно, что вероятность суммы совместных событий может быть представлена в виде двух областей А и В, которые пересекаются между собой. Как видно из картинки, площадь их объединения равна общей площади за минусом области их пересечения. Это геометрическое пояснения делают более понятной нелогичную на первый взгляд формулу. Отметим, что геометрические решения - не редкость в теории вероятностей.

Определение вероятности суммы множества (больше двух) совместных событий довольно громоздкое. Чтобы вычислить ее, нужно воспользоваться формулами, которые предусмотрены для этих случаев.

Зависимые события

Зависимыми события называются в случае, если наступление одного (А) из них влияет на вероятность наступления другого (В). Причем учитывается влияние как появления события А, так и его непоявление. Хотя события и называются зависимыми по определению, но зависимо лишь одно из них (В). Обычная вероятность обозначалась как Р(В) или вероятность независимых событий. В случае с зависимыми вводится новое понятие - условная вероятность Р A (В) , которая является вероятностью зависимого события В при условии произошедшего события А (гипотезы), от которого оно зависит.

Но ведь событие А тоже случайно, поэтому у него также есть вероятность, которую нужно и можно учитывать в осуществляемых расчетах. Далее на примере будет показано, как работать с зависимыми событиями и гипотезой.

Пример расчета вероятности зависимых событий

Хорошим примером для расчета зависимых событий может стать стандартная колода карт.

На примере колоды в 36 карт рассмотрим зависимые события. Нужно определить вероятность того, что вторая карта, извлеченная из колоды, будет бубновой масти, если первая извлеченная:

  1. Бубновая.
  2. Другой масти.

Очевидно, что вероятность второго события В зависит от первого А. Так, если справедлив первый вариант, что в колоде стало на 1 карту (35) и на 1 бубну (8) меньше, вероятность события В:

Р A (В) =8/35=0,23

Если же справедлив второй вариант, то в колоде стало 35 карт, и по-прежнему сохранилось полное число бубен (9), тогда вероятность следующего события В:

Р A (В) =9/35=0,26.

Видно, что если событие А условлено в том, что первая карта - бубна, то вероятность события В уменьшается, и наоборот.

Умножение зависимых событий

Руководствуясь предыдущей главой, мы принимаем первое событие (А) как факт, но если говорить по сути, оно имеет случайный характер. Вероятность этого события, а именно извлечение бубны из колоды карт, равна:

Р(А) = 9/36=1/4

Поскольку теория не существует сама по себе, а призвана служить в практических целях, то справедливо отметить, что чаще всего нужна вероятность произведения зависимых событий.

Согласно теореме о произведении вероятностей зависимых событий, вероятность появления совместно зависимых событий А и В равна вероятности одного события А, умноженная на условную вероятность события В (зависимого от А):

Р(АВ) = Р (А) *Р A (В)

Тогда в примере с колодой вероятность извлечения двух карт с мастью бубны равна:

9/36*8/35=0,0571, или 5,7%

И вероятность извлечения вначале не бубны, а потом бубны, равна:

27/36*9/35=0,19, или 19%

Видно, что вероятность появления события В больше при условии, что первой извлекается карта масти, отличной от бубны. Такой результат вполне логичный и понятный.

Полная вероятность события

Когда задача с условными вероятностями становится многогранной, то обычными методами ее вычислить нельзя. Когда гипотез больше двух, а именно А1,А2,…,А n , ..образует полную группу событий при условии:

  • P(A i)>0, i=1,2,…
  • A i ∩ A j =Ø,i≠j.
  • Σ k A k =Ω.

Итак, формула полной вероятности для события В при полной группе случайных событий А1,А2,…,А n равна:

Взгляд в будущее

Вероятность случайного события крайне необходима во многих сферах науки: эконометрике, статистике, в физике и т. д. Поскольку некоторые процессы невозможно описать детерминировано, так как они сами имеют вероятностный характер, необходимы особые методы работы. Теория вероятности события может быть использована в любой технологичной сфере как способ определить возможность ошибки или неисправности.

Можно сказать, что, узнавая вероятность, мы некоторым образом делаем теоретический шаг в будущее, разглядывая его через призму формул.

Предмет теории вероятностей. Случайные события и их классификация. Классическое определение вероятности. Общие принципы комбинаторики.

Вероятность относится к числу таких понятий, которыми мы охотно пользуемся в повседневной жизни, совсем не задумываясь об этом. Например, даже наша речь носит отпечаток стихийно-вероятностного подхода к окружающей нас действительности. Мы часто употребляем слова "вероятно ", "маловероятно ", "невероят­но" . Уже в этих словах имеется попытка оценить возможность появления того или иного события, т.е. попытка дать количественную оценку этой возможности. Идея выражать числами степень возможности появления тех или иных событий возникла после того, как люди попытались обобщить достаточно большое число наблюдений за явлениями, в которых проявляется свойство устойчивости, т.е. способность повторяться довольно часто.

Например, нельзя заранее определить результат одного подбрасывания монеты. Но если подбрасывать монету достаточно большое число раз, то почти наверняка можно утверждать, что примерно половину раз она упадет на "орла", а половину на "решку". Число подобных примеров, в которых интуитивное представление о численном значении вероятности того или иного события, можно привести очень много. Однако все подобные примеры сопровождаются неопределенными понятиями типа "честное" подбрасывание, "правильная" монета и т.п. Теория вероятностей стала наукой лишь тогда, когда были выявлены основные понятия теории вероятностей, четко сформулировано само понятие вероятности, построена вероятностная аксиоматическая модель.

Любая наука, развивающая общую теорию какого-либо круга явлений, содержит ряд основных понятий, на которых она базируется. Таковы, например, в геометрии понятия точки, прямой, плоскости, линии, поверхности; в математическом анализе – функции, предела, дифференциала, интеграла; в механике – силы, массы, скорости, ускорения. Естественно, что такие понятия есть и в теории вероятностей. Одним из таких основных понятий является понятие случайного события .

СЛУЧАЙНЫЕ СОБЫТИЯ И ИХ ВЕРОЯТНОСТИ

Случайные события и их классификация

Под событием будем понимать любое явление, которое происходит в результате осуществления определенного комплекса условий. Осуществление этого комплекса условий называют экспериментом (опытом, испытанием ). Заметим, что в проведении опыта необязательно должен участвовать сам исследователь. Опыт можно поставить мысленно, или он может протекать независимо от него; в последнем случае исследователь выступает в качестве наблюдателя.

Событие называется достоверным , если оно непременно должно произойти при выполнении определенных условий. Так, достоверным является выпадение не более шести очков при бросании обычной игральной кости; утверждение, что вода является находится в жидком состоянии при +20 0 С в нормальных условиях, и т.п. Событие называется невозможным , если оно заведомо не наступит при выполнении определенных условий. Так, невозможным событием является утверждение, что можно извлечь более четырех тузов из обычной колоды карт; или утверждение Мюнхгаузена, что он мог поднять себя за волосы, и т.п. Событие называется случайным, если оно может либо произойти, либо не произойти при выполнении определенных условий. Например, выпадение «орла» при бросании монеты; попадание в цель при одном выстреле по мишени и т.п.

В теории вероятностей любое событие рассматривается как результат некоторого эксперимента. Поэтому события часто называют исходами . При этом исход того или иного эксперимента должен зависеть от ряда случайных факторов, т.е. любой исход должен являться случайным событием; в противном случае, такими событиями должны заниматься другие науки. Особо следует отметить, что в теории вероятностей рассматриваются только такие эксперименты, которые можно повторить (воспроизвести) при неизменном комплексе условий произвольное число раз (по крайней мере теоретически). То есть, теория вероятностей изучает лишь такие события, в отношении которых имеет смысл не только утверждение об их случайности, но и возможна объективная оценка доли случаев их появления. В связи с этим, подчеркнем, что теория вероятностей не занимается изучением уникальных событий, как бы они ни были интересными сами по себе. Например, утверждение, что в данном месте в данное время произойдет землетрясение, относится к числу случайных событий. Однако подобные события уникальны, поскольку их нельзя воспроизвести.

Другой пример, событие, состоящее в том, что данный механизм проработает больше года, является случайным, но уникальным. Конечно, каждый механизм индивидуален по своим качествам, но этих механизмов может изготовляться очень много, причем изготовленных в одних и тех же условиях. Испытания многих сходных объектов дает ту информацию, которая позволяет оценить долю числа появления рассматриваемого случайного события. Таким образом, в теории вероятностей имеют дело с повторением испытаний двух типов : 1) повторение испытаний для одного и того же объекта ; 2) испытание многих сходных объектов .

В дальнейшем для краткости слово «случайный» будем опускать. События будем обозначать заглавными буквами латинского алфавита: A, B, C и т.д.

События A и B называются несовместными , если наступление одного из них исключает возможность появления другого. Например, при подбрасывании монеты могут наступить два события: выпадет "орел" или "решка". Однако, одновременно эти события, при одном подбрасывании, появится не могут. Если в результате испытания возможно одновременное появление событий A и B, то такие события называются совместными . Например, выпадение четного числа очков при подбрасывании игральной кости (событие А) и числа очков, кратного трем (событие В) будут совместными, ибо выпадение шести очков означает наступление и события А, и события В.