Метод гармонической линеаризации нелинейных звеньев. Гармоническая линеаризация

Министерство образования и науки Российской Федерации

Саратовский государственный технический университет

Балаковский институт техники, технологии и управления

Метод гармонической линеаризации

Методические указания к лабораторной работе по курсу «Теория автоматического управления» для студентов специальности 210100

Одобрено

редакционно –издательским советом

Балаковского интститута техники,

технологии и управления

Балаково 2004

Цель работы: Изучение нелинейных систем с помощью метода гармонической линеаризации (гармонического баланса), определение коэффициентов гармонической линеаризации для различных нелинейных звеньев. Получение навыков по нахождению параметров симметричных колебаний постоянной амплитуды и частоты (автоколебаний), используя алгебраический, частотный способы, а также с помощью критерия Михайлова.

ОСНОВНЫЕ СВЕДЕНИЯ

Метод гармонической линеаризации относится к приближенным методам исследования нелинейных систем. Он позволяет достаточно просто и с приемлемой точностью оценивать устойчивость нелинейных систем, определять частоту и амплитуду установившихся в системе колебаний.

Предполагается, что исследуемая нелинейная САУ может быть представлена в следующем виде

причем нелинейная часть должна иметь одну нелинейность

. (1)

Эта нелинейность может быть как непрерывной, так и релейной, однозначной или гистерезисной.

Любую функцию или сигнал можно разложить в ряд по системе линейно-независимых, в частном случае ортонормированных функций. В качестве такого ортогонального ряда может быть использован ряд Фурье.

Разложим в ряд Фурье выходной сигнал нелинейной части системы

, (2)

здесь - коэффициенты Фурье,

,

,

. (3)

Таким образом, сигнал согласно (2) может быть представлен в виде бесконечной суммы гармоник с возрастающими частотами и т. д. Этот сигнал поступает на вход линейной части нелинейной системы.

Обозначим передаточную функцию линейной части

, (4)

причем степень полинома числителя должна быть меньше степени полинома знаменателя. В этом случае АЧХ линейной части имеет вид

где 1 - не имеет полюсов, 2 - имеет полюс или полюса.

Для АЧХ справедливо записать

Таким образом, линейная часть нелинейной системы является фильтром высоких частот. В этом случае линейная часть будет пропускать без ослабления только низкие частоты, высокие же по мере роста частоты будут существенно ослабляться.

В методе гармонической линеаризации делается предположение о том, что линейная часть системы будет пропускать только постоянную составляющую сигнала и первую гармонику. Тогда сигнал на выходе линейной части будет иметь вид

Этот сигнал проходит по всему замкнутому контуру системы Рис.1 и на выходе нелинейного элемента без учета более высоких гармоник, согласно (2) имеем

. (7)

При исследовании нелинейных систем с помощью метода гармонической линеаризации возможны случаи симметричных и несимметричных колебаний. Рассмотрим случай симметричных колебаний. Здесь и.

Введем следующие обозначения

,

.

Подставив их в (7), получим . (8)

С учетом того, что

,

, где ,

. (9)

Согласно (3) и (8) при

,

. (10)

Выражение (9) является гармонической линеаризацией нелинейности устанавливает линейную связь входной переменной и выходной при . Величины и называются коэффициентами гармонической линеаризации.

Необходимо отметить, что уравнение (9) является линейным для конкретных величин и (амплитуды и частоты гармонических колебаний в системе). Но в целом оно сохраняет нелинейные свойства, так как коэффициенты различны для различных и . Эта особенность и позволяет исследовать с помощью метода гармонической линеаризации свойства нелинейных систем [ Попов Е.П.].

В случае несимметричных колебаний гармоническая линеаризация нелинейности приводит к линейному уравнению

,

,

. (12)

Так же как и уравнение (9), линеаризованное уравнение (11) сохраняет свойства нелинейного элемента, так как коэффициенты гармонической линеаризации , , а так же постоянная составляющая зависят и от смещения и от амплитуды гармонических колебаний .

Уравнения (9) и (11) позволяют получить передаточные функции гармонически линеаризованных нелинейных элементов. Так для симметричных колебаний

При подаче на вход линейной системы гармонического сигнала

на выходе системы также устанавливается гармонический сигнал, но с другой амплитудой и смещенный по фазе по отношению к входному. Если же синусоидальный сигнал подать на вход нелинейного элемента, то на его выходе формируются периодические колебания, но по форме существенно отличающиеся от синусоидальных. В качестве при­мера на рис. 8.17 показан характер изменения выходной переменной нелинейного элемента с релейной ха­рактеристикой (8.14) при поступлении на его вход синусоидальных колебаний (8.18).

Разлагая периодический сигнал на выходе нелинейного элемента в ряд Фурье, представляем в виде суммы постоянной составляющей и бесконечного множества гармонических составляющих:

, (8.19)

где постоянные коэффи­циенты ряда Фурье; – частота колебаний пер­вой гармоники (основная частота), равная частоте вход­ных синусоидальных колебаний;Т – период колебания первой гармоники, равный периоду входных синусоидальных колебаний.

Выходной сигнал нелинейного элемента поступает на вход линейной части САУ (см. рис. 8.1), которая, как правило, обладает существенной инерционностью. При этом высокочастотные составляющие сигнала (8.19) практически не проходят на выход системы, т.е. линейная часть является фильтром по отношению к высокочастотным гармоническим состав­ляющим. В связи с этим, а также учитывая, что ампли­туды гармонических составляющих в уменьшаются с ростом часто­ты гармоники, для приближенной оценки выходной величины нелинейного элемента, в большом числе случаев достаточно учитывать только первую гармониче­скую составляющую в .

Следовательно, при отсутствии постоянной составляю­щей в выходных колебаниях выражение (8.19) прибли­женно можно записать в виде:

Выражая из формулы (8.20) функцию , а из производной – функцию , преобразуем выражение (8.20) следующим образом:

. (8.21)

Таким образом, нелинейная зависимость выходной величины от входной в нелинейном элементе приближен­но заменяется линейной зависимостью, описываемой вы­ражением (8.21).

Выполнив в вы­ражении (8.21) преобразование Лапласа, получим:

Как и для непрерывных звеньев введем в рассмотрение переда­точную функцию нелинейного гармонически линеаризо­ванного элемента , как отношение изображения выходной ве­личины к изображению входной величины:

. (8.22)

Таблица 8.1

Коэффициенты гармонической линеаризации типовых нелинейностей

Статическая характеристика нелинейного элемента

Линейная характеристика с зоной нечувствительности

Линейная характеристика с ограничением

Линейная характеристика с зоной нечувствительности и ограничением

Характеристика «люфт»

Идеальная релейная характеристика

Однозначная релейная характеристика с зоной нечувствительности

Неоднозначная релейная характеристика с зоной нечувствительности

Кубическая парабола:

Характеристика «петля гистерезиса»

Передаточная функция нелинейного эле­мента имеет существенное отличие от передаточной функ­ции линейной системы , заключающееся в том, что зависит от амплитуды и частоты входного сигнала.

Выражение (8.22) запишем в виде:

q (A ) + q 1 (A ), (8.23)

где q(A) ,q 1 (A) – коэффициенты гармонической линеаризации, определяемые как отношения коэффициентов ряда Фурье для пер­вой гармоники выходных колебаний к амплитуде вход­ных колебаний:

q (A ) = q 1 (A ) = . (8.24)

Заменяя в выражении (8.23) р на , получим выражение длякомплексного коэффициента передачи нелинейного элемента :

q (A ) +j q 1 (A ), (8.25)

являющегося аналогом АФХ для линейного звена.

В качестве примера определим выражение для комплексного коэффициента передачи нелинейного элемента с релейной статической характеристикой (8.14). Коэффициенты ряда Фурье A 1 и B 1 для указанной нелинейности равны:

B 1 .

Очевидно, что коэффициент B 1 будет равен нулю для любого нелинейного элемента с нечетно-симметричной статической нелинейностью.

где - передаточная функция линейной части си­стемы; - передаточная функция нелинейного элемента после его линеаризации.

Если , то выражение (8.26) можно записать в виде:

Заменяя в выражении (8.27) р на , по­лучим комплексное выражение, в котором необходимо выделить вещественную и мнимую части:

[ q (A ) +j q 1 (A ) ] . (8.28)

При этом условие возникновения периодических колебаний в системе с частотой и амплитудой запишем:

(8.29)

Если решения системы (8.29) комплексные или отрицательные, режим автоколебаний в системе невозможен. Наличие положительных вещественных решений для и свидетельствует о наличии в системе автоколебаний, которые необходимо проверить на устойчивость.

В качестве примера найдем условия возникновения автоколеба­ний в САУ, если передаточная функция ее линейной части равна:

(8.30)

и нелинейным элементом типа «петля гистерезиса».

Передаточная функция гармонически линеаризованного нелинейного элемента (см. табл. 8.1) имеет вид:

. (8.31)

Подставляя выражения (8.30) и (8.31) в выражение (8.26) и заменяя р на , найдем выражение для :

Отсюда в соответствии с выражением (8.29) получаем следующие условия возникновения автоколебаний в системе:

Решение системы уравнений (8.29) обычно затруднительно, так как ко­эффициенты гармонической линеаризации имеют слож­ную зависимость от амплитуды входного сигнала. Кроме того, помимо определения амплитуды и частоты , необходимо оценить устойчивость автоколебаний в системе.

Условия возникновения автоколебаний в нелинейной системе и параметры предельных циклов можно исследо­вать, используя частотные критерии устойчивости, например, критерий устойчи­вости Найквиста. Согласно этому критерию при наличии ав токолебанийамплитудно-фазовая характеристика разомкнутой гармонически линеаризованной системы, равная

проходит через точку (-1, j0). Следовательно, для и справедливо равенство:

. (8.32)

Решение уравнения (8.32) относительно частоты и амплитуды автоколебаний можно получить графически. Для этого на комплексной плоскости необходимо, изменяя частоту от 0 до , построить годограф АФХ линейной части системы и, изменяя амплитудуА от 0 до , построить годограф обратной ха­рактеристики нелинейной части , взятый с знаком «минус». Если эти годографы не пересекаются, то режим автоколебаний в исследуемой системе не существует (рис. 8.18, б).

При пересечении годографов (рис. 8.18, а) в системе возникают автоколебания, частота и амплитуда которых опреде­ляются значениями и в точке пересечения..

Если и - пересекаются в нескольких точках (рис. 8.18, а), то это свидетельствует о наличии в системе нескольких предельных циклов. При этом колебания в системе могут быть устойчивы­ми и неустойчивыми.

Устойчивость автоколебательного режима оценивается следующим образом. Режим автоколебаний устойчив, если точка на годографе нелинейной части , соответствующая амплитуде большей по сравнению со значением в точке пересечения годографов, не охватывается годографом частотной характеристики линейной части системы. В противном случае автоколебательный режим неустойчив.

На рис. 8.18, а годографы пересекаются в точках 1 и 2. Точка 1 определяет неустойчивый режим автоколебаний, так как точка годографа , соответствующая увеличенной амплитуде, охватывается годографом частотной характеристики линейной части системы. Точке 2 соответствует устойчивый режим автоколебаний, амплитуда которых определяется по годографу а частота – по годографу .

В качестве примера оценим устойчивость автоколебаний в двух нелинейных системах. Будем полагать, что передаточные функции линейных частей этих систем совпадают и равны:

,

но входящие в них их нелинейные элементы различны. Пусть в первую систему включен нелинейный элемент «идеальное реле», описываемый системой (8.14), а во вторую – нелинейный элемент со статической характеристикой «кубическая парабола». Воспользовавшись данными таблицы 8.1, получим:

На рис. 8.19 изображены годографы этих систем совместно с годографом АФХ линейной части системы . На основании изложенного можно утверждать, что в первой системе возникают устойчивые автоколебания с частотой и амплитудой , а во второй системе автоколебания неустойчивые.

Как уже отмечалось, в нелинейных и в особенности релейных АСР часто наблюдаются устойчивые периодические колебания постоянной амплитуды и частоты, так называемые автоколебания . Причем автоколебания могут сохраняться даже при значительных изменениях параметров системы. Практика показала, что во многих случаях колебания регулируемой величины (рис. 3) близки к гармоническим.


Близость автоколебаний к гармоническим позволяет использовать для определения их параметров – амплитуды A и частоты w 0 – метод гармонической линеаризации. В основе метода лежит предположение, что линейная часть системы является фильтром низких частот (гипотеза фильтра). Определим условия, при которых автоколебания в системе могут быть близки к гармоническим. Ограничимся системами, которые как на рис. 3 могут быть приведены к последовательному соединению нелинейного элемента и линейной части. Предположим, что сигнал задания величина постоянная, для простоты примем его равным нулю. А сигнал ошибки (рис 3) является гармоническим:

Выходной сигнал нелинейного элемента как всякий периодический сигнал – на рисунке 3 это прямоугольные колебания – может быть представлен в виде суммы гармоник ряда Фурье.

Допустим, что линейная часть системы является фильтром низких частот (рис. 4) и пропускает только первую гармонику с частотой w 0 . Вторая с частотой 2w 0 и более высокие гармоники отфильтровываются линейной частью. В этом случае на выходе линейной части будет существовать практически только первая гармоника , а влиянием высших гармоник можно пренебречь

Таким образом, если линейная часть системы является фильтром низких частот, а частота автоколебаний w 0 удовлетворяет условиям

, (4)

Предположение, что линейная часть системы является фильтром низких частот, называется гипотезой фильтра . Гипотеза фильтра выполняется всегда, если разность степеней полиномов знаменателя и числителя передаточной функции линейной части

не меньше двух

Условие (6) выполняется для многих реальных систем. Примером могут служить апериодическое звено второго порядка и реальное интегрирующее

При исследовании автоколебаний, близких к гармоническим, в расчет принимается только первая гармоника периодических колебаний на выходе нелинейного элемента, поскольку высшие гармоники все равно практически отфильтровываются линейной частью. В режиме автоколебаний осуществляется гармоническая линеаризация нелинейного элемента. Нелинейный элемент заменяется эквивалентным линейным с комплексным коэффициентом усиления (описывающей функцией) , зависящим от амплитуды входного гармонического сигнала:


где и – действительная и мнимая части ,

– аргумент ,

– модуль .

В общем случае зависит как от амплитуды так и частоты автоколебаний и постоянной составляющей . Физически комплексный коэффициент усиления нелинейного элемента , чаще называемый коэффициентом гармонической линеаризации , есть комплексный коэффициент усиления нелинейного элемента по первой гармонике . Модуль коэффициента гармонической линеаризации

численно равен отношению амплитуды первой гармоники на выходе нелинейного элемента к амплитуде входного гармонического сигнала.

Аргумент

характеризует сдвиг по фазе между первой гармоникой выходных колебаний и входным гармоническим сигналом. Для однозначных нелинейностей, таких как, например, на рис. 2,а и 2,б, действительное выражение и

Для неоднозначных нелинейностей, рис. 2,в, 2,г, определяется по формуле

где S – площадь петли гистерезиса. Площадь S берется со знаком плюс, если петля гистерезиса обходится в положительном направлении (рис. 2,в) и со знаком минус в противном случае (рис. 2,г).

В общем случае и вычисляются по формулам

где , – нелинейная функция (характеристика нелинейного элемента).

С учетом вышеизложенного, при исследовании автоколебаний, близких к гармоническим, нелинейная АСР (рис. 3) заменяется эквивалентной с коэффициентом гармонической линеаризации вместо нелинейного элемента (рис. 5). Выходной сигнал нелинейного элемента на рис. 5 обозначен как , это

Подчеркивает, что нелинейный элемент генерирует только

первую гармонику колебаний. Формулы для коэффициентов гармонической линеаризации для типовых нелинейностей можно найти в литературе, например, в . В таблице приложения В приведены характеристики исследуемых релейных элементов, формулы для и их годографы. Там же приведены формулы и годографы для обратного коэффициента гармонической линеаризации , определяемого выражением

где и действительная и мнимая часть . Годографы и строятся в координатах , и , соответственно.

Запишем теперь условия существования автоколебаний. Система на рис. 5 эквивалентна линейной. В линейной системе существуют незатухающие колебания, если она находится на границе устойчивости. Воспользуемся условием границы устойчивости по критерию Найквиста: . На рис. 6,а – две точки пересечения, что указывает на наличие двух предельных циклов.

Министерство образования и науки Российской Федерации

Саратовский государственный технический университет

Балаковский институт техники, технологии и управления

Метод гармонической линеаризации

Методические указания к лабораторной работе по курсу «Теория автоматического управления» для студентов специальности 210100

Одобрено

редакционно –издательским советом

Балаковского интститута техники,

технологии и управления

Балаково 2004

Цель работы: Изучение нелинейных систем с помощью метода гармонической линеаризации (гармонического баланса), определение коэффициентов гармонической линеаризации для различных нелинейных звеньев. Получение навыков по нахождению параметров симметричных колебаний постоянной амплитуды и частоты (автоколебаний), используя алгебраический, частотный способы, а также с помощью критерия Михайлова.

ОСНОВНЫЕ СВЕДЕНИЯ

Метод гармонической линеаризации относится к приближенным методам исследования нелинейных систем. Он позволяет достаточно просто и с приемлемой точностью оценивать устойчивость нелинейных систем, определять частоту и амплитуду установившихся в системе колебаний.

Предполагается, что исследуемая нелинейная САУ может быть представлена в следующем виде

причем нелинейная часть должна иметь одну нелинейность

Эта нелинейность может быть как непрерывной, так и релейной, однозначной или гистерезисной.

Любую функцию или сигнал можно разложить в ряд по системе линейно-независимых, в частном случае ортонормированных функций. В качестве такого ортогонального ряда может быть использован ряд Фурье.

Разложим в ряд Фурье выходной сигнал нелинейной части системы

, (2)

здесь - коэффициенты Фурье,

,

,

. (3)

Таким образом, сигнал согласно (2) может быть представлен в виде бесконечной суммы гармоник с возрастающими частотами и т. д. Этот сигнал поступает на вход линейной части нелинейной системы.

Обозначим передаточную функцию линейной части

, (4)

причем степень полинома числителя должна быть меньше степени полинома знаменателя. В этом случае АЧХ линейной части имеет вид

где 1 - не имеет полюсов, 2 - имеет полюс или полюса.

Для АЧХ справедливо записать

Таким образом, линейная часть нелинейной системы является фильтром высоких частот. В этом случае линейная часть будет пропускать без ослабления только низкие частоты, высокие же по мере роста частоты будут существенно ослабляться.

В методе гармонической линеаризации делается предположение о том, что линейная часть системы будет пропускать только постоянную составляющую сигнала и первую гармонику. Тогда сигнал на выходе линейной части будет иметь вид

Этот сигнал проходит по всему замкнутому контуру системы Рис.1 и на выходе нелинейного элемента без учета более высоких гармоник, согласно (2) имеем

. (7)

При исследовании нелинейных систем с помощью метода гармонической линеаризации возможны случаи симметричных и несимметричных колебаний. Рассмотрим случай симметричных колебаний. Здесь и.

Введем следующие обозначения

Подставив их в (7), получим . (8)

С учетом того, что

. (9)

Согласно (3) и (8) при

,

. (10)

Выражение (9) является гармонической линеаризацией нелинейности устанавливает линейную связь входной переменной и выходной при . Величины и называются коэффициентами гармонической линеаризации.

Необходимо отметить, что уравнение (9) является линейным для конкретных величин и (амплитуды и частоты гармонических колебаний в системе). Но в целом оно сохраняет нелинейные свойства, так как коэффициенты различны для различных и . Эта особенность и позволяет исследовать с помощью метода гармонической линеаризации свойства нелинейных систем [ Попов Е.П.].

В случае несимметричных колебаний гармоническая линеаризация нелинейности приводит к линейному уравнению

,

,

. (12)

Так же как и уравнение (9), линеаризованное уравнение (11) сохраняет свойства нелинейного элемента, так как коэффициенты гармонической линеаризации , , а так же постоянная составляющая зависят и от смещения и от амплитуды гармонических колебаний .

Уравнения (9) и (11) позволяют получить передаточные функции гармонически линеаризованных нелинейных элементов. Так для симметричных колебаний

, (13)

при этом частотная передаточная функция

зависит только от амплитуды и не зависит от частоты колебаний в системе.

Необходимо отметить, что если нечетно-симметричная нелинейность однозначна, то в случае симметричных колебаний в соответствии с (9) и (10) получим, что , (15)

(16)

и линеаризованная нелинейность имеет вид

Для неоднозначных нелинейностей (с гистерезисом) интеграл в выражении (16) не равен нулю, вследствие различия в поведении кривой при возрастании и убывании , поэтому справедливо полное выражение (9).

Найдем коэффициенты гармонической линеаризации для некоторых нелинейных характеристик. Пусть нелинейная характеристика имеет вид релейной характеристики с гистерезисом и зоной нечувствительности. Рассмотрим, как гармонические колебания проходят через нелинейный элемент с такой характеристикой.



При выполнении условия , то есть если амплитуда входного сигнала меньше зоны нечувствительности , то сигнал на выходе нелинейного элемента отсутствует. Если же амплитуда , то реле переключается в точках A, B, C и D. Обозначим и .

,

. (18)

При вычислении коэффициентов гармонической линеаризации следует иметь ввиду, что при симметричных нелинейных характеристиках интегралы в выражениях (10) находятся на полупериоде (0, ) с последующим увеличением результата в два раза. Таким образом

,

. (19)

Для нелинейного элемента с релейной характеристикой и зоной нечувствительности

,

Для нелинейного элемента, имеющего релейную характеристику с гистерезисом

,

Аналогично могут быть получены коэффициенты гармонической линеаризации для других нелинейных характеристик.

Рассмотрим два способа определения симметричных колебаний постоянной амплитуды и частоты (автоколебаний) и устойчивости линеаризованных систем: алгебраический и частотный. Сначала рассмотрим алгебраический способ. Для замкнутой системы Рис.1 передаточная функция линейной части равна

.

Запишем гармонически линеаризованную передаточную функцию нелинейной части

.

Характеристической уравнение замкнутой системы имеет вид

. (22)

Если в исследуемой системе возникают автоколебания, то это говорит о наличии двух чисто мнимых корней в ее характеристическом уравнении. Поэтому подставим в характеристическое уравнение (22) значение корня .

. (23)

Представим

Получим два уравнения, определяющих искомую амплитуду и частоту

,

. (24)

Если в решении возможны вещественные положительные значения амплитуды и частоты , то в системе могут возникнуть автоколебания. Если же амплитуда и частота не имеет положительных значений, то автоколебания в системе невозможны.

Рассмотрим пример 1. Пусть исследуемая нелинейная система имеет вид

В этом примере нелинейный элемент представляет собой чувствительный элемент с релейной характеристикой, для которого коэффициенты гармонической линеаризации

Исполнительное устройство имеет передаточную функцию вида

Передаточная функция объекта регулирования равна

. (27)

Передаточная функция линейной части системы

, (28)

На основании (22), (25) и (28) запишем характеристическое уравнение замкнутой системы

, (29)

,

Пусть 1/сек, сек, сек, в.

В этом случае параметры периодического движения равны

7,071 ,

Рассмотрим способ определения параметров автоколебаний в линеаризованной САУ с помощью критерия Михайлова. Способ основан на том, что при возникновении автоколебаний система будет находиться на границе устойчивости и годограф Михайлова в этом случае будет проходить через начало координат.

В примере 2 найдем параметры автоколебаний при том условии, что нелинейный элемент в системе Рис.4 представляет собой чувствительный элемент, имеющий релейную характеристику с гистерезисом, для которого коэффициенты гармонической линеаризации

,

Линейная часть осталась неизменной.

Запишем характеристическое уравнение замкнутой системы

Годограф Михайлова получается заменой .

Задача заключается в том, чтобы подобрать такую амплитуду колебаний , при которой годограф пройдет через начало координат. Необходимо отметить, что при этом текущая частота , так как именно в этом случае кривая пройдет через начало координат.

Расчеты, проведенные в MATHCAD 7 при 1/сек, сек, сек, в и в, дали следующие результаты. На Рис.5 годограф Михайлова проходит через начало координат. Для повышения точности расчетов увеличим нужный фрагмент графика. На Рис.6 приведен фрагмент годографа, увеличенный в окрестности начала координат. Кривая проходит через начало координат при в.

Рис.5. Рис.6.

Частоту колебаний при этом можно найти из условия равенства нулю модуля . Для частот

значения модуля сведены в таблицу

Таким образом, частота колебаний 6,38 . Необходимо отметить, что точность расчетов легко может быть увеличена.

Полученное периодическое решение, определяемое значением амплитуды и частоты , необходимо исследовать на устойчивость. Если решение устойчиво, то в системе имеет место автоколебательный процесс (устойчивый предельный цикл). В противном случае предельный цикл будет неустойчивым.

Проще всего для исследования устойчивости периодического решения использовать критерий устойчивости Михайлова в графическом виде. Было установлено, что при кривая Михайлова проходит через начало координат. Если дать малое приращение , то кривая займет положение либо выше нуля, либо ниже. Так в последнем примере дадим приращение в, то есть и . Положение кривых Михайлова показано на Рис.7.

При кривая проходит выше нуля, что говорит об устойчивости системы и затухающем переходном процессе. При кривая Михайлова проходит ниже нуля, система является неустойчивой и переходный процесс является расходящимся. Таким образом периодическое решение с амплитудой в и частотой колебаний 6,38 устойчиво.

Для исследования устойчивости периодического решения может быть использован и аналитический критерий, получаемый из графического критерия Михайлова. Действительно, чтобы узнать пойдет ли кривая Михайлова при выше нуля достаточно посмотреть, куда будет перемещаться точка кривой Михайлова, которая при находится в начале координат.

Если разложить перемещение этой точки по координатным осям X и Y, то для устойчивости периодического решения вектор, определяемый проекциями на координатные оси

должен быть расположен справа от касательной MN к кривой Михайлова, если смотреть вдоль кривой в сторону возрастания , направление которой определяется проекциями

Аналитическое условие устойчивости запишем в следующем виде

В этом выражении частные производные берутся по текущему параметру кривой Михайлова

,

Необходимо отметить, что аналитическое выражение критерия устойчивости (31) справедливо только для систем не выше четвертого порядка, так как например для системы пятого порядка в начале координат условие (31) может выполняться, а система будет неустойчивой

Применим критерий (31) для исследования устойчивости периодического решения, полученного в примере 1.

,

,

, ,

Назначение метода гармонической линеаризации .

Идея метода гармонической линеаризации была предложена в 1934г. Н. М. Крыловым и Н. Н. Боголюбовым. Применительно к системам автоматического управления этот метод разработан Л. С. Гольдфарбом и Е. П. Поповым. Другие названия этого ме­тода и его модификаций - метод гармонического баланса, метод описывающих функций, метод эквивалентной линеаризации.

Метод гармонической линеаризации - это метод исследова­ния автоколебаний. Он позволяет определять условия существования и параметры возможных автоколебаний в нелинейных си­стемах.

Знание параметров автоколебаний позволяет представить картину возможных процессов в системе и, в частности, определить условия устойчивости. Предположим, например, что в результате исследования автоколебаний в некоторой нелинейной системе мы получили зависимость амплитуды этих автоколебаний А от коэффициента передачи k линейной части системы, показанную на рис.12.1, и знаем, что автоколебания устойчивы.

Из графика следует, что при большом значении коэффициента передачи k, когда k > k кр, в системе существуют автоколебания. Их амплитуда уменьшается до нуля при уменьшении коэффициента передачи k до k кр. На рис.12.1 стрелками условно показан характер переходных процессов при разных значениях k : при k > k кр переходный процесс, вызванный начальным отклонением, стягивается к автоколебаниям. Из рисунка видно, что при k < k кр, система оказывается устойчивой. Таким образом, k кр – это критическое по условию устойчивости значение коэффициента передачи. Его превышение приводит к тому, что исходный режим системы становится неустойчивым и в ней возникают автоколебания. Следовательно, знание условий существования автоколебаний в системе позволяет определить и условия устойчивости.

Идея гармонической линеаризации.

Рассмотрим нелинейную систему, схема которой представлена на рис.12.2, а. Система состоит из линейной части с передаточной функцией W л (s ) и нелинейного звена НЛ с конкретно заданной характеристикой . Звено с коэффициентом - 1 показывает, что обратная связь в системе отрицательна. Полагаем, что в системе существуют автоколебания, амплитуду и частоту которых мы хотим найти. В рассматриваемом режиме входная величина Х нелинейного звена и выходная Y являются периодическими функциями времени.

Метод гармонической линеаризации основан на nредnоложении, что колебания на входе нелинейного звена являются синусоидальны.ми ,т. е. что

, (12.1)

где А амплитуда и - частота этих автоколебаний, а - возможная в общем случае постоянная составляющая, когда автоколебания несимметричны.

В действительности автоколебания в нелинейных системах всегда несинусоидальны вследствие искажения их формы нели­нейным звеном. Поэтому указанное исходное предположение озна­чает, что метод гармонической линеаризации является принципиально приближенным и область его применения ограничена случаями, когда автоколебания на входе нели­нейного звена достаточно близки к синусоидальным. Для того чтобы это имело место, линейная часть системы должна не пропу­скать высших гармоник автоколебаний, т. е. являться фильтром нижних частот . Последнее иллюстрируется рис. 12.2, б. Если, например, частота автоколебаний равна , то линейная часть с показанной на рис. 12.2, б АЧХ будет играть роль фильтра нижних частот для этих колебаний, так как уже вторая гармоника, частота которой равна 2 , практически не пройдет на вход нелинейного звена. Следовательно, в этом случае метод гармонической линеаризации применим.

Если частота автоколебаний равна , линейная часть будет свободно пропускать вторую, третью и другие гармоники автоколебаний. В этом случае нельзя утверждать, что колебания на входе нелинейного звена будут достаточно близки к синусоидальным, т.е. необходимая для применения метода гармонической линеаризации предпосылка не выполняется.

Для того чтобы установить, является ли линейная часть си­стемы фильтром нижних частот и тем самым определить примени­мость метода гармонической линеаризации, необходимо знать частоту автоколебаний. Однако ее можно узнать только в резуль­тате использования этого метода. Таким образом, пpимeнимocть метода гармонической лuнеарuзацuu прuходuтся определять уже в конце uсследованuя в порядке проверки.

Заметим при этом, что если в результате этой проверки гипо­теза о том, что линейная часть системы играет роль фильтра ниж­них частот, не подтверждается, это не означает еще неверности полученных результатов, хотя, разумеется, ставит их под сом­нение и требует дополнительной проверки каким-либо другим методом.

Итак, предположив, что линейная часть системы есть фильтр нижних частот, считаем, что автоколебания на входе нелинейного звена синусоидальны, т.е имеют вид (12.1). Колебания на выходе этого звена будут при этом уже несинусоидальными вследствие их искажения нелинейностью. В качестве примера на рис. 12.3 построена кривая на выходе нелинейного звена для определенной амплитуды входного чисто синусоидального сигнала по характеристике звена, приведенной там же.

Рис.12.3. Прохождение гармонического колебания через нелинейное звено.

Однако, поскольку мы считаем, что линейная часть системы пропускает только основную гармонику автоколебаний, имеет смысл интересоваться только этой гармоникой на выходе нелинейного звена. Поэтому разложим выходные колебания в ряд Фурье и отбросим высшие гармоники. В результате получим:

;

; (12.3)

;

.

Перепишем выражение (12.2) в более удобном для последующего использования виде, подставив в него получающиеся из (12.1) следующие выражения для и :

Подставив эти выражения в (12.2), будем иметь:

(12.4)

. (12.5)

Здесь введены обозначения:

. (12.6)

Дифференциальное уравнение (12.5) справедливо для синусоидального входного сигнала (12.1) и определяет выходной сигнал нелинейного звена без учета высших гармоник.

Коэффициенты в соответствии с выражениями (12.3) для коэффициентов Фурье являются функциями постоянной составляющей , амплитуды А и частоты автоколебаний на входе нелинейного звена. При фиксированных А , и уравнение (12.5) является линейным. Таким образом, если отбросить высшие гармоники, то для фиксированного гармонического сигнала исходное нелинейное звено может быть заменено эквивалентным линейным, описываемым уравнением (12.5). Эта замена и называется гармонической линеаризацией .

На рис. 12.4 условно изображена схема этого звена, состоящая из двух параллельных звеньев.

Рис. 12.4. Эквивалентное линейное звено, полученное в результате гармонической линеаризации.

Одно звено () пропускает постоянную составляющую, а другое – только синусоидальную составляющую автоколебаний.

Коэффициенты называются коэффициентами гармонической линеаризации или гармоническими коэффициентами передачи : - коэффициент передачи постоянной составляющей, а - два коэффициента передачи синусоидальной составляющей автоколебаний. Эти коэффициенты определяются нелинейностью и значениями и по формулам (12.3). Существуют определенные по этим формулам готовые выра­жения для для ряда типовых нелинейных звеньев. Для этих и вообще всех безынерционных нелинейных звеньев вели­чины не зависят от и являются функциями только амплитуды А и .