Зачем нужен адронный коллайдер? Принципы конструкции коллайдеров. Экспериментальные исследования, проводимые на коллайдерах Что надо для создания адронного коллайдера

Сокращённо БАК (англ. Large Hadron Collider, сокращённо LHC) - ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений. Коллайдер построен в ЦЕРНе (Европейский совет ядерных исследований), находящемся около Женевы, на границе Швейцарии и Франции. БАК является самой крупной экспериментальной установкой в мире. В строительстве и исследованиях участвовали и участвуют более 10 тыс. учёных и инженеров из более чем 100 стран.

Большим назван из-за своих размеров: длина основного кольца ускорителя составляет 26 659 м; адронным - из-за того, что он ускоряет адроны, то есть тяжёлые частицы, состоящие из кварков; коллайдером (англ. collider - сталкиватель) - из-за того, что пучки частиц ускоряются в противоположных направлениях и сталкиваются в специальных точках столкновения.

Технические характеристики BAK

В ускорителе предполагается сталкивать протоны с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14·1012 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5 ГэВ (5·109 электронвольт) на каждую пару сталкивающихся нуклонов. На начало 2010 года БАК уже несколько превзошел по энергии протонов предыдущего рекордсмена - протон-антипротонный коллайдер Тэватрон, который до конца 2011 года работал в Национальной ускорительной лаборатории им. Энрико Ферми (США). Несмотря на то, что наладка оборудования растягивается на годы и ещё не завершена, БАК уже стал самым высокоэнергичным ускорителем элементарных частиц в мире, на порядок превосходя по энергии остальные коллайдеры, в том числе и релятивистский коллайдер тяжёлых ионов RHIC, работающий в Брукхейвенской лаборатории (США).

Светимость БАК во время первых недель работы пробега была не более 1029 частиц/см 2 ·с, тем не менее она продолжает постоянно повышаться. Целью является достижение номинальной светимости в 1,7·1034 частиц/см 2 ·с, что по порядку величины соответствует светимостям BaBar (SLAC, США) и Belle (англ.) (KEK, Япония).

Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер . Туннель с длиной окружности 26,7 км проложен под землёй на территории Франции и Швейцарии. Глубина залегания туннеля - от 50 до 175 метров, причём кольцо туннеля наклонено примерно на 1,4 % относительно поверхности земли. Для удержания, коррекции и фокусировки протонных пучков используются 1624 сверхпроводящих магнита, общая длина которых превышает 22 км. Магниты работают при температуре 1,9 K (-271 °C), что немного ниже температуры перехода гелия в сверхтекучее состояние.

Детекторы БАК

На БАК работают 4 основных и 3 вспомогательных детектора:

  • ALICE (A Large Ion Collider Experiment)
  • ATLAS (A Toroidal LHC ApparatuS)
  • CMS (Compact Muon Solenoid)
  • LHCb (The Large Hadron Collider beauty experiment)
  • TOTEM (TOTal Elastic and diffractive cross section Measurement)
  • LHCf (The Large Hadron Collider forward)
  • MoEDAL (Monopole and Exotics Detector At the LHC).

ATLAS, CMS, ALICE, LHCb - большие детекторы, расположенные вокруг точек столкновения пучков. Детекторы TOTEM и LHCf - вспомогательные, находятся на удалении в несколько десятков метров от точек пересечения пучков, занимаемых детекторами CMS и ATLAS соответственно, и будут использоваться попутно с основными.

Детекторы ATLAS и CMS - детекторы общего назначения, предназначены для поиска бозона Хиггса и «нестандартной физики», в частности тёмной материи, ALICE - для изучения кварк-глюонной плазмы в столкновениях тяжёлых ионов свинца, LHCb - для исследования физики b-кварков, что позволит лучше понять различия между материей и антиматерией, TOTEM - предназначен для изучения рассеяния частиц на малые углы, таких что происходит при близких пролётах без столкновений (так называемые несталкивающиеся частицы, forward particles), что позволяет точнее измерить размер протонов, а также контролировать светимость коллайдера, и, наконец, LHCf - для исследования космических лучей, моделируемых с помощью тех же несталкивающихся частиц.

С работой БАК связан также седьмой, совсем незначительный в плане бюджета и сложности, детектор (эксперимент) MoEDAL, предназначенный для поиска медленно движущихся тяжёлых частиц.

Во время работы коллайдера столкновения проводятся одновременно во всех четырёх точках пересечения пучков, независимо от типа ускоряемых частиц (протоны или ядра). При этом все детекторы одновременно набирают статистику.

Ускорение частиц в коллайдере

Скорость частиц в БАК на встречных пучках близка к скорости света в вакууме. Разгон частиц до таких больших энергий достигается в несколько этапов. На первом этапе низкоэнергетичные линейные ускорители Linac 2 и Linac 3 производят инжекцию протонов и ионов свинца для дальнейшего ускорения. Затем частицы попадают в PS-бустер и далее в сам PS (протонный синхротрон), приобретая энергию в 28 ГэВ. При этой энергии они уже движутся со скоростью близкой к световой. После этого ускорение частиц продолжается в SPS (протонный суперсинхротрон), где энергия частиц достигает 450 ГэВ. Затем сгусток протонов направляют в главное 26,7-километровое кольцо, доводя энергию протонов до максимальных 7 ТэВ, и в точках столкновения детекторы фиксируют происходящие события. Два встречных пучка протонов при полном заполнении могут содержать 2808 сгустков каждый. На начальных этапах отладки процесса ускорения циркулируют лишь по одному сгустку в пучке длиной несколько сантиметров и небольшого поперечного размера. Затем начинают увеличивать количество сгустков. Сгустки располагаются в фиксированных позициях относительно друг друга, которые синхронно движутся вдоль кольца. Сгустки в определённой последовательности могут сталкиваться в четырёх точках кольца, где расположены детекторы частиц.

Кинетическая энергия всех сгустков адронов в БАКе при полном его заполнении сравнима с кинетической энергией реактивного самолета, хотя масса всех частиц не превышает нанограмма и их даже нельзя увидеть невооружённым глазом. Такая энергия достигается за счёт скорости частиц, близкой к скорости света.

Сгустки проходят полный круг ускорителя быстрее, чем за 0,0001 сек, совершая, таким образом, свыше 10 тыс. оборотов в секунду

Цели и задачи БАК

Главная задача Большого адронного коллайдера - выяснить устройство нашего мира на расстояниях меньше 10 –19 м, "прощупав" его частицами с энергией несколько ТэВ. К настоящему времени уже накопилось много косвенных свидетельств того, что на этом масштабе физикам должен открыться некий «новый пласт реальности», изучение которого даст ответы на многие вопросы фундаментальной физики. Каким именно окажется этот пласт реальности - заранее не известно. Теоретики, конечно, предложили уже сотни разнообразных явлений, которые могли бы наблюдаться на энергиях столкновений в несколько ТэВ, но именно эксперимент покажет, что на самом деле реализуется в природе.

Поиск Новой физики Стандартную модель не может считаться окончательной теорией элементарных частиц. Она должна быть частью некоторой более глубокой теории строения микромира, той частью, которая видна в экспериментах на коллайдерах при энергиях ниже примерно 1 ТэВ. Такие теории коллективно называют «Новая физика» или «За пределами Стандартной модели». Главная задача Большого адронного коллайдера - получить хотя бы первые намеки на то, что это за более глубокая теория. Для дальнейшего объединения фундаментальных взаимодействий в одной теории используются различные подходы: теория струн, получившая своё развитие в М-теории (теории бран), теория супергравитации, петлевая квантовая гравитация и др. Некоторые из них имеют внутренние проблемы, и ни у одной из них нет экспериментального подтверждения. Проблема в том, что для проведения соответствующих экспериментов нужны энергии, недостижимые на современных ускорителях заряженных частиц. БАК позволит провести эксперименты, которые ранее были невозможны и, вероятно, подтвердит или опровергнет часть этих теорий. Так, существует целый спектр физических теорий с размерностями больше четырёх, которые предполагают существование «суперсимметрии» - например, теория струн, которую иногда называют теорией суперструн именно из-за того, что без суперсимметрии она утрачивает физический смысл. Подтверждение существования суперсимметрии, таким образом, будет косвенным подтверждением истинности этих теорий. Изучение топ-кварков Топ-кварк - самый тяжёлый кварк и, более того, это самая тяжёлая из открытых пока элементарных частиц. Согласно последним результатам Тэватрона, его масса составляет 173,1 ± 1,3 ГэВ/c 2 . Из-за своей большой массы топ-кварк до сих пор наблюдался пока лишь на одном ускорителе - Тэватроне, на других ускорителях просто не хватало энергии для его рождения. Кроме того, топ-кварки интересуют физиков не только сами по себе, но и как «рабочий инструмент» для изучения бозона Хиггса. Один из наиболее важных каналов рождения бозона Хиггса в БАК - ассоциативное рождение вместе с топ-кварк-антикварковой парой. Для того, чтобы надёжно отделять такие события от фона, предварительно необходимо изучение свойств самих топ-кварков. Изучение механизма электрослабой симметрии Одной из основных целей проекта является экспериментальное доказательство существования бозона Хиггса - частицы, предсказанной шотландским физиком Питером Хиггсом в 1964 году в рамках Стандартной модели. Бозон Хиггса является квантом так называемого поля Хиггса, при прохождении через которое частицы испытывают сопротивление, представляемое нами как поправки к массе. Сам бозон нестабилен и имеет большую массу (более 120 ГэВ/c 2). На самом деле, физиков интересует не столько сам бозон Хиггса, сколько хиггсовский механизм нарушения симметрии электрослабого взаимодействия. Изучение кварк-глюонной плазмы Ожидается, что примерно один месяц в год будет проходить в ускорителе в режиме ядерных столкновений. В течение этого месяца коллайдер будет разгонять и сталкивать в детекторах не протоны, а ядра свинца. При неупругом столкновении двух ядер на ультрарелятивистских скоростях на короткое время образуется и затем распадается плотный и очень горячий комок ядерного вещества. Понимание происходящих при этом явлений (переход вещества в состояние кварк-глюонной плазмы и её остывание) нужно для построения более совершенной теории сильных взаимодействий, которая окажется полезной как для ядерной физики, так и для астрофизики. Поиск суперсимметрии Первым значительным научным достижением экспериментов на БАК может стать доказательство или опровержение «суперсимметрии» - теории, гласящей, что любая элементарная частица имеет гораздо более тяжёлого партнера, или «суперчастицу». Изучение фотон-адронных и фотон-фотонных столкновений Электромагнитное взаимодействие частиц описывается как обмен (в ряде случаев виртуальными) фотонами. Другими словами, фотоны являются переносчиками электромагнитного поля. Протоны электрически заряжены и окружены электростатическим полем, соответственно это поле можно рассматривать как облако виртуальных фотонов. Всякий протон, особенно релятивистский протон, включает в себя облако виртуальных частиц как составную часть. При столкновении протонов между собой взаимодействуют и виртуальные частицы, окружающие каждый из протонов. Математически процесс взаимодействия частиц описывается длинным рядом поправок, каждая из которых описывает взаимодействие посредством виртуальных частиц определённого типа (см.: диаграммы Фейнмана). Таким образом, при исследовании столкновения протонов косвенно изучается и взаимодействие вещества с фотонами высоких энергий, представляющее большой интерес для теоретической физики. Также рассматривается особый класс реакций - непосредственное взаимодействие двух фотонов, которые могут столкнуться как со встречным протоном, порождая типичные фотон-адронные столкновения, так и друг с другом. В режиме ядерных столкновений, из-за большого электрического заряда ядра, влияние электромагнитных процессов имеет ещё большее значение. Проверка экзотических теорий Теоретики в конце XX века выдвинули огромное число необычных идей относительно устройства мира, которые все вместе называются «экзотическими моделями». Сюда относятся теории с сильной гравитацией на масштабе энергий порядка 1 ТэВ, модели с большим количеством пространственных измерений, преонные модели, в которых кварки и лептоны сами состоят из частиц, модели с новыми типами взаимодействия. Дело в том, что накопленных экспериментальных данных оказывается всё ещё недостаточно для создания одной-единственной теории. А сами все эти теории совместимы с имеющимися экспериментальными данными. Поскольку в этих теориях можно сделать конкретные предсказания для БАК, экспериментаторы планируют проверять предсказания и искать следы тех или иных теорий в своих данных. Ожидается, что результаты, полученные на ускорителе, смогут ограничить фантазию теоретиков, закрыв некоторые из предложенных построений. Другое Также ожидается обнаружение физических явлений вне рамок Стандартной Модели. Планируется исследование свойств W и Z-бозонов, ядерных взаимодействий при сверхвысоких энергиях, процессов рождения и распадов тяжёлых кварков (b и t).

История создания ускорителя, который мы знаем сегодня как большой адронный коллайдер, начинается ещё с 2007 года. Изначально хронология ускорителей началась с циклотрона. Прибор представлял собой небольшое устройство, которое легко умещалось на столе. Затем история ускорителей стала стремительно развиваться. Появился синхрофазотрон и синхротрон.

В истории, пожалуй, самым занимательным стал период с 1956 по 1957 годы. В те времена советская наука, в частности физика, не отставала от зарубежных братьев. Используя наработанный годами опыт, советский физик по имени Владимир Векслер совершил прорыв в науке. Им был создан самый мощный по тем временам синхрофазотрон. Его рабочая мощность была равна 10 гигаэлектронвольт (10 миллиардов электронвольт). После этого открытия создавались уже серьёзные образцы ускорителей: большой электронно-позитронный коллайдер, Швейцарский ускоритель, в Германии, США. Все они имели одну общую цель — изучение фундаментальных частиц кварков.

Большой адронный коллайдер был создан в первую очередь благодаря стараниям итальянского физика. Имя ему Карло Руббиа, лауреат Нобелевской премии. Во время своей деятельности Руббиа работал директором в Европейской организации по ядерным исследованиям. Решено было построить и запустить адронный коллайдер именно на месте центра исследований.

Где адронный коллайдер?

Коллайдер размещён на границе между Швейцарией и Францией. Длина его окружности составляет 27 километров, поэтому его и называют большим. Кольцо ускорителя уходит вглубь от 50 до 175 метров. В коллайдере установлено 1232 магнита. Они являются сверхпроводящими, а значит из них можно выработать максимальное поле для разгона, так как затраты энергии в таких магнитах практически отсутствуют. Общий вес каждого магнита составляет 3,5 тонны при длине 14,3 метра.

Как и любой физический объект, большой адронный коллайдер выделяет тепло. Поэтому его необходимо постоянно остужать. Для этого поддерживается температура 1,7 К с помощью 12 миллионов литров жидкого азота. Помимо этого, для охлаждения используется (700 тысяч литров), и самое важное - используется давление, которое в десять раз ниже нормального атмосферного.

Температура 1,7 К по шкале Цельсия составляет -271 градус. Такая температура почти близка к называется минимально возможный предел, который может иметь физическое тело.

Внутренняя часть тоннеля не менее интересна. Там находятся ниобий-титановые кабели со сверхпроводящими возможностями. Их длина составляет 7600 километров. Общий вес кабелей равен 1200 тонн. Внутренность кабеля — это сплетение 6300 проволок с общим расстоянием в 1,5 миллиарда километров. Такая длина равна 10 астрономическим единицам. Например, равняется 10 таким единицам.

Если говорить о его географическом местоположении, то можно сказать, что кольца коллайдера лежат меж городов Сен-Жени и Форнее-Вольтер, расположенными на французской стороне, а также Мейрин и Вессурат - со Швейцарской стороны. Маленькое кольцо, именуемое PS, проходит вдоль границы по диаметру.

Смысл существования

Для того чтобы ответить на вопрос «для чего нужен адронный коллайдер», нужно обратиться к учёным. Многие учёные говорят, что это самое великое изобретение за весь период существования науки, и то, что без него у науки, которая известна нам сегодня, просто нет смысла. Существование и запуск большого адронного коллайдера интересны тем, что при столкновении частиц в адронном коллайдере происходит взрыв. Все мельчайшие частицы разлетаются в разные стороны. Образовываются новые частицы, которые могут объяснить существование и смысл многого.

Первое, что учёные старались найти в этих разбившихся частицах — это теоретически предсказанную физиком Питером Хиггсом элементарную частицу, названную Это потрясающая частица является носителем информации, как считается. Ещё её принято называть «частицей Бога». Открытие ее приблизило бы учёных к пониманию вселенной. Нужно отметить, что в 2012 году, 4 июля, адронный коллайдер (запуск его частично удался) помог обнаружить похожую частицу. На сегодняшний день учёные пытаются изучить её подробнее.

Долго ли...

Конечно, сразу возникает вопрос, а почему учёные так долго изучают эти частицы. Если есть прибор, то можно запускать его, и каждый раз снимать все новые и новые данные. Дело в том, что работа адронного коллайдера — это дорогостоящее удовольствие. Один запуск обходится в большую сумму. Например, годовой расход энергии равняется 800 млн. кВт/ч. Такой объем энергии расходует город, в котором проживает около 100 тыс. человек, по средним меркам. И это не считая затрат на обслуживание. Ещё одна причина - это то, что у адронного коллайдера взрыв, который происходит при сталкивании протонов, связан с получением большого объёма данных: компьютеры считывают столько информации, что на обработку уходит большое количество времени. Даже несмотря на то что мощность компьютеров, которые получают информацию, велика даже по сегодняшним меркам.

Следующая причина — это не менее известная Учёные, работающие с коллайдером в этом направлении, уверены, что видимый спектр всей вселенной составляет всего 4%. Предполагается, что оставшиеся — это тёмная материя и тёмная энергия. Экспериментально пытаются доказать то, что эта теория верна.

Адронный коллайдер: за или против

Выдвинутая теория о тёмной материи поставила под сомнение безопасность существования адронного коллайдера. Возник вопрос: "Адронный коллайдер: за или против?" Он волновал многих учёных. Все великие умы мира разделились на две категории. «Противники» выдвинули интересную теорию о том, что если такая материя существует, то у неё должна быть противоположная ей частица. И при столкновении частиц в ускорителе возникает тёмная часть. Существовал риск того, что тёмная часть и часть, которую мы видим, столкнутся. Тогда это могло бы привести к гибели всей вселенной. Однако после первого запуска адронного коллайдера эта теория была частично разбита.

Далее по значимости идёт взрыв вселенной, вернее сказать - рождение. Считается, что при столкновении можно пронаблюдать то, как вселенная вела себя в первые секунды существования. То, как она выглядела после происхождения Большого взрыва. Считается, что процесс столкновения частиц очень схож с тем, который был в самом начале зарождения вселенной.

Ещё не менее фантастичная идея, которую проверяют учёные - это экзотические модели. Это кажется невероятным, но есть теория, которая предполагает, что существуют иные измерения и вселенные с похожими на нас людьми. И как ни странно, ускоритель и здесь сможет помочь.

Проще говоря, цель существования ускорителя в том, чтобы понять, что такое вселенная, как она была создана, доказать или опровергнуть все существующие теории о частицах и связанных с ними явлениях. Конечно, на это потребуются годы, но с каждым запуском появляются новые открытия, которые переворачивают мир науки.

Факты об ускорителе

Всем известно, что ускоритель разгоняет частицы до 99% скорости света, но не многие знают, что процент равен 99,9999991% от скорости света. Это потрясающая цифра имеет смысл благодаря идеальной конструкции и мощным магнитам ускорения. Также нужно отметить некоторые менее известные факты.

Приблизительно 100 млн. потоков с данными, которые приходят от каждого из двух основных детекторов, могут в считаные секунды заполнить больше 100 тысяч компакт-дисков. Всего за один месяц количество дисков бы достигло такой высоты, что если их сложить в стопу, то хватило бы до Луны. Поэтому было принято решение собирать не все данные, которые приходят с детекторов, а лишь те, которые разрешит использовать система сбора данных, которая по факту выступает как фильтр для полученных данных. Было решено записывать лишь 100 событий, которые возникли в момент взрыва. Записываться эти события будут в архив вычислительного центра системы Большого адронного коллайдера, который расположен в Европейской лаборатории по физике элементарных частиц, которая по совместительству является местом расположения ускорителя. Записываться будут не те события, которые были зафиксированы, а те, которые представляют для научного сообщества наибольший интерес.

Последующая обработка

После записи сотни килобайт данных будут обрабатывать. Для этого используется более двух тысяч компьютеров, расположенных, в ЦЕРН. Задача этих компьютеров заключается в обработке первичных данных и формировании из них базы, которая будет удобна для дальнейшего анализа. Далее сформированный поток данных будет направлен на вычислительную сеть GRID. Эта интернет-сеть объединяет тысячи компьютеров, которые располагаются в разных институтах по всему миру, связывает более сотни крупных центров, которые расположены на трёх континентах. Все такие центры соединены с ЦЕРН с использованием оптоволокна - для максимальной скорости передачи данных.

Говоря о фактах, нужно упомянуть также о физических показателях строения. Туннель ускорителя находится в отклонении на 1,4% от горизонтальной плоскости. Сделано это в первую очередь для того, чтобы поместить большую часть туннеля ускорителя в монолитную скалу. Таким образом, глубина размещения на противоположных сторонах разная. Если считать со стороны озера, которое находится недалеко от Женевы, то глубина будет равна 50 метрам. Противоположная часть имеет глубину 175 метров.

Интересно то, что лунные фазы влияют на ускоритель. Казалось бы, как такой отдалённый объект может воздействовать на таком расстоянии. Однако замечено, что во время полнолуния, когда происходит прилив, земля в районе Женевы, поднимается на целых 25 сантиметров. Это влияет на длину коллайдера. Протяжённость тем самым увеличивается на 1 миллиметр, а также изменяется энергия пучка на 0,02%. Поскольку контроль энергии пучка должен проходить вплоть до 0,002%, исследователи обязаны учитывать это явление.

Также интересно то, что туннель коллайдера имеет форму восьмиугольника, а не круга, как многие представляют. Углы образуются из-за коротких секций. В них располагаются установленные детекторы, а также система, которая управляет пучком ускоряющихся частиц.

Строение

Адронный коллайдер, запуск которого связан с использованием многих деталей и волнением учёных, - удивительное устройство. Весь ускоритель состоит из двух колец. Малое кольцо называется Протонный синхротрон или, если использовать аббревиатуры — PS. Большое кольцо - Протонный суперсинхротрон, или SPS. Совместно два кольца позволяют разогнать части до 99,9 % скорости света. При этом коллайдер повышает и энергию протонов, увеличивая их суммарную энергию в 16 раз. Также он позволяет сталкивать частицы между собой примерно 30 млн. раз/с. в течение 10 часов. От 4 основных детекторов получается по большей мере 100 терабайт цифровых данных в секунду. Получение данных обусловлено отдельными факторами. Например, они могут обнаружить элементарные частицы, которые имеют отрицательный электрический заряд, а также обладают половинным спином. Поскольку эти частицы являются неустойчивыми, то прямое их обнаружение невозможно, возможно обнаружить только их энергию, которая будет вылетать под определённым углом к оси пучка. Эта стадия называется первым уровнем запуска. За этой стадией следят более чем 100 специальных плат обработки данных, в которые встроены логические схемы реализации. Эта часть работы характерна тем, что в период получения данных происходит отбор более чем 100 тысяч блоков с данными в одну секунду. Затем эти данные будут использоваться для анализа, который происходит с использованием механизма более высокого уровня.

Системы следующего уровня, наоборот, принимают информацию от всех потоков детектора. Программное обеспечение детектора работает в сети. Там оно будет использовать большое количество компьютеров для обработки последующих блоков данных, среднее время между блоками - 10 микросекунд. Программы должны будут создавать отметки частиц, соответствуя изначальным точкам. В результате получится сформированный набор данных, состоящих из импульса, энергии, траектории и других, которые возникли при одном событии.

Части ускорителя

Весь ускоритель можно поделить на 5 основных частей:

1) Ускоритель электронно-позитронного коллайдера. Деталь, представляет собой около 7 тысяч магнитов со сверхпроводящими свойствами. С помощью них происходит направление пучка по кольцевому туннелю. А также они сосредотачивают пучок в один поток, ширина которого уменьшится до ширины одного волоса.

2) Компактный мюонный соленоид. Это детектор, предназначенный для общего назначения. В таком детекторе ведутся поиски новых явлений и, например, поиск частиц Хиггса.

3) Детектор LHCb. Значение этого устройства заключается в поиске кварков и противоположных им частиц - антикварков.

4) Тороидальная установка ATLAS. Этот детектор предназначен для фиксации мюонов.

5) Alice. Этот детектор захватывает столкновения ионов свинца и протон-протонные столкновения.

Проблемы при запуске адронного коллайдера

Несмотря на то что наличие высоких технологий исключает возможность ошибок, на практике все иначе. Во время сборки ускорителя происходили задержки, а также сбои. Нужно сказать, что неожиданной такая ситуация не была. Устройство содержит столько нюансов и требует такой точности, что учёные ожидали подобных результатов. Например, одна из проблем, которая встала перед учёными во время запуска - отказ магнита, который фокусировал пучки протонов непосредственно перед их столкновением. Эта серьёзная авария была вызвана разрушением части крепления вследствие потери сверхпроводимости магнитом.

Эта проблема возникла 2007 году. Из-за неё запуск коллайдера откладывали несколько раз, и только в июне запуск состоялся, спустя почти год коллайдер все же запустился.

Последний запуск коллайдера прошёл успешно, было собрано множество терабайт данных.

Адронный коллайдер, запуск которого состоялся 5 апреля 2015 года, успешно функционирует. В течение месяца пучки будут гонять по кольцу, постепенно увеличивая мощность. Цели для исследования как таковой нет. Будет повышена энергия столкновения пучков. Значение поднимут с 7 ТэВ до 13 ТэВ. Такое увеличение позволит увидеть новые возможности при столкновении частиц.

В 2013 и 2014 гг. проходили серьёзные технические осмотры туннелей, ускорителей, детекторов и другого оборудования. В результате было 18 биполярных магнитов со сверхпроводящей функцией. Нужно отметить, что общее количество их составляет 1232 штуки. Однако оставшиеся магниты не остались без внимания. В остальных заменили системы защиты от остывания, поставили улучшенные. Также улучшена охлаждающая система магнитов. Это позволяет им оставаться при низких температурах с максимальной мощностью.

Если все пройдёт успешно, то следующий запуск ускорителя пройдёт лишь через три года. Через этот период намечены плановые работы по улучшению, техническому осмотру коллайдера.

Нужно отметить, что ремонт обходится в копейку, не учитывая стоимость. Адронный коллайдер, по состоянию на 2010 год имеет цену, равную 7,5 млрд. евро. Эта цифра выводит весь проект на первое место в списке самых дорогих проектов в истории науки.

Зачем физикам нужен новый коллайдер?
Если спросить физиков, какой еще коллайдер им понадобится в самом ближайшем будущем, то, скорее всего, вы получите ответ, что это электрон-позитронный коллайдер.

Зачем вообще нужен новый коллайдер и почему нельзя обойтись одним только БАК?

Ответ на этот вопрос кроется в природе ускоряемых частиц. Протоны, ускоряемые на БАК, участвуют в процессах «сильного» взаимодействия. «Сильное» взаимодействие - это одно из четырех фундаментальных взаимодействий природы наряду со «слабым», электромагнитным и гравитационным взаимодействиями. Как следует из самого названия, «сильное» взаимодействие является самым сильным из всех типов взаимодействий. Его сила намного превосходит силы «слабого» и электромагнитного взаимодействий и уж тем более гравитации, которая (как это ни покажется странным!) является самым слабым из всех существующих взаимодействий. Так почему же большинство людей никогда не слышали о существовании «сильного» взаимодействия, хотя все мы прекрасно знакомы с гравитацией и электричеством? Это объясняется тем, что «сильное» взаимодействие действует только на очень малых расстояниях, сравнимых с размерами атомных ядер. Например, благодаря «сильному» взаимодействию протоны и нейтроны удерживаются вместе внутри атомных ядер. Не будь его, протоны разлетелись бы в разные стороны под действием сил электрического отталкивания. А нейтроны, у которых вообще нет электрического заряда, просто нельзя было бы удержать в составе ядер.

сделать открытие можно, но для того, чтобы точно измерить параметры вновь открытых частиц, нужно что-то еще.

Этим «еще» как раз и являются электрон-позитронные коллайдеры. В отличие от протонов, электроны и позитроны не принимают участия в процессах «сильного» взаимодействия. Их взаимодействие обусловлено электрослабыми процессами. Благодаря специфике этих взаимодействий, сечения рождения новой физики и фонов невелики. По этой причине электрон-позитронный коллайдер сложно использовать для первоначального открытия (хотя и можно). Однако если открытие уже сделано и приблизительно известна масса новых частиц, то. настраивая соответствующим образом энергию сталкивающихся электронов и позитронов, можно многократно увеличить вероятность рождения сигнальных событий, оставляя фоны небольшими. Так что электрон-позитронный коллайдер станет неплохим дополнением к БАК.

Электрон-позитронные коллайдеры
В настоящий момент существуют два конкурирующих проекта будущего электрон-позитронного коллайдера. Название первого проекта — Международный Линейный Коллайдер (ILC), о нем подробно . Предполагается, что энергия столкновений на этом коллайдере составит 500 ГэВ при длине коллайдера 31 км. В проект заложена возможность увеличения энергии столкновений до 1 ТэВ, длина коллайдера при этом будет увеличена до 50 км. Технология, которую предполагается использовать при строительстве ILC, хорошо отработана. Во многом она опирается на технологию, созданную для строительства TESLA. Ускоритель TESLA предполагалось построить на территории научно-исследовательского центра DESY (Гамбург, Германия). По техническим характеристикам он схож с ILC. Строительство было практически одобрено и отменено в самый последний момент из-за возникших финансовых трудностей. ILC — международный проект, страны-участницы которого могут предлагать для строительства собственную территорию. Россия на правах участника ILC предложила строить его в Дубне.

Компактный Линейный Коллайдер, или сокращенно CLIC, - это второй из проектов строительства электрон-позитронного коллайдера. Предполагаемая энергия столкновений составит 3 ТэВ с возможностью последующего увеличения до 5 ТэВ. Длина ускорительного комплекса составит 48,3 км. Энергия CLIC превышает энергию ILC. Это несомненный плюс. Однако технология CLIC пока еще не отработана настолько же тщательно, как для ILC. На это потребуется еще как минимум несколько лет.

На первый взгляд, энергия электрон-позитронного коллайдера гораздо меньше, чем энергия БАК. Однако, в отличие от электронов, которые являются истинно элементарными частицами, протоны обладают внутренней структурой. Они состоят из кварков, удерживаемых вместе силами «сильного» взаимодействия, переносчиками которого являются глюоны. При столкновении протонов в коллайдере столкновения в реальности происходят между входящими в их состав кварками и глюонами, каждый из которых несет на себе лишь небольшую часть полной энергии протонов. При сравнении энергии этих столкновений с энергией электрон-позитронного коллайдера оказывается, что они сопоставимы.

В любом случае окончательное решение о необходимости строительства электрон-позитронного коллайдера и выборе технологии будет принято только после того, как на БАК будут получены результаты.

Почему линейный?

А почему будущий электрон-позитронный коллайдер должен быть линейным? Ведь в этом случае теряется основное преимущество кольцевых ускорителей, в которых частицы ускоряются многократно, проходя одни и те же ускорительные элементы при движении по кругу. Например, ускорение протонов на БАК от энергии в 450 ГэВ до энергии в 7 ТэВ предполагается осуществлять в течение 20 мин. За это время пучок протонов успевает пройти расстояние 36∙10 7 км (что примерно в два раза превышает расстояние от Земли до Солнца). Линейный коллайдер такой длины построить просто невозможно. Так что для постройки линейного коллайдера необходимо существенно увеличить темп ускорения. Даже при этом длина коллайдера составит десятки километров. Еще одним недостатком линейных коллайдеров является возможность установить только одну экспериментальную установку, так как точка столкновения пучков всего одна. На БАК, например, таких точек 4.

Казалось бы, если физикам так нужен электрон-позитронный коллайдер, почему бы не сделать его кольцевым? К сожалению, возможности создания кольцевого электрон-позитронного коллайдера ограничены самой природой. При движении заряженных частиц по кругу возникает синхротронное излучение, в результате чего частицы теряют свою энергию. Этот эффект практически не существенен для протонов (даже при энергиях БАК). Однако электроны, масса которых почти в 2000 раз меньше массы протона, будут терять существенную долю своей энергии вследствие синхротронного излучения. Выход в строительстве линейного коллайдера. Возможность сооружения такого коллайдера была продемонстрирована в Стэнфорде, где находится единственный в мире линейный электрон-позитронный коллайдер.

Мюонный коллайдер
Электрон принадлежит к классу лептонов — группе частиц, участвующих в электрослабых взаимодействиях. Другим представителем этого класса частиц является мюон. Это отрицательно заряженная элементарная частица, масса которой в 210 раз превышает массу электрона, что позволяет не заботиться о синхротронном излучении при ускорении мюонов в кольцевом ускорителе. Мюон был бы идеальной частицей для ускорения, если бы не его маленькое время жизни. Оно составляет всего 1,6 мкс. За это время мюоны необходимо разогнать до релятивистских скоростей. Это представляет серьезные технические трудности. Серьезные усилия по разработке технологии мюонного коллайдера стали прикладываться в середине 1990-х. В настоящее время существует концептуальный проект мюонного коллайдера с энергией в диапазоне 1,5-4 ТэВ. Однако реализация этого проекта, скорее всего, вопрос более отдаленного будущего, чем постройка электрон-позитронного коллайдера.

Возможно, первым шагом на пути создания мюонного коллайдера станет строительство нейтринной фабрики.

Нейтрино - это частица с удивительно маленьким сечением взаимодействия, обладающая вследствие этого огромной проникающей способностью. Например, для того чтобы нейтрино ударилось в преграду из железа, размер этой преграды должен быть сравним с расстоянием от Солнца до Юпитера. Поль Дирак - ученый, впервые предложивший эту частицу теоретически, даже заключил пари, что ее никогда не найдут экспериментально (действительно, как же ее обнаружить, если она ни с чем не взаимодействует?). Однако пари он проиграл. Частица была обнаружена еще при жизни ученого. В настоящий момент свойства нейтрино активно исследуются. Для этого, в частности, используются нейтринные пучки. На первый взгляд кажется невероятным, как вообще можно создать пучок нейтрино? Как заставить частицы, не обладающие электрическим зарядом и крайне неохотно взаимодействующие с веществом, лететь в одном направлении? Для этого используются предварительно ускоренные заряженные частицы (например, мюоны), при распаде дающие нейтрино. Если множество мюонов летят в одном направлении, то и образовавшиеся нейтрино также полетят в одном направлении. Вот вам и нейтринный пучок! Беда только в том, что живут мюоны крайне недолго, и за время жизни их не получается накопить в большом количестве. Точнее, не получалось. Этот пробел призван заполнить проект нейтринной фабрики, в основу которой положено создание «накопительных» мюонных колец, что в свою очередь является первым шагом на пути создания мюонного коллайдера.

Следующий адронный?
А будет ли построен следующий адронный коллайдер, превосходящий по энергии БАК? Ведь рано или поздно эпоха точных измерений (для которых в первую очередь необходим линейный электрон-позитронный коллайдер) будет закончена, и снова понадобится коллайдер для исследования новых диапазонов энергий. Такой проект существует. В 2010 году CERN объявил о планах построить в туннеле БАК (после прекращения его работы) адронный коллайдер с энергией 35 ТэВ.

Предел технологии
Каждое следующее поколение ускорителей становится все больше и все дороже. Огромная стоимость и сложность конструкции во многом объясняются тем, что существующая технология ускорения достигла своего предела. Так, внутри нового поколения линейных ускорителей необходимо поддерживать огромные ускоряющие поля. Однако при увеличении напряженности поля внутри ускоряющих элементов возникают пробои, приводящие к их разрушению. Чтобы справиться с этой проблемой, применяются специальные конструкции и дорогостоящие материалы. Для ILC и CLIC с большим трудом удалось создать ускоряющие градиенты порядка 100 МэВ/м.

Сильно увеличить это значение вряд ли удастся. Это определяет предел технологии для линейных коллайдеров.

В кольцевых коллайдерах ускоряющие градиенты не являются проблемой, из-за того что частицы можно многократно ускорять при движении по кругу.

Однако чем больше энергия ускоряемых частиц, тем сложнее их удержать на кольцевой траектории внутри ускорителя. Для этого используются сильные магнитные поля. На БАК магнитное поле 8,33 Тесла. На следующем адронном коллайдере, который планируется разместить в тоннеле БАК, после того как БАК завершит свою работу (речь об этом шла чуть выше), магнитное поле составит около 20 Тесла. Это почти предел современной технологии. Другой путь - увеличивать размеры ускоряющего кольца, в результате кривизна траектории частиц уменьшается, так что удерживать их внутри коллайдера становится проще. Однако, учитывая то, что размеры современных коллайдеров и так составляют десятки километров, дальнейшее их увеличение кажется весьма проблематичным и трудоемким делом.

Из-за гигантской стоимости новых ускорителей вопросы об их строительстве обсуждаются на общегосударственном уровне. И даже становятся разменной картой в руках политиков. Стоит вспомнить, например, о проекте SSC (Supercondacting Super Collider).

Этот адронный коллайдер с энергией пучков 20x20 ТэВ предполагалось построить в США. Да-да, это не опечатка! Суммарная энергия сталкивающихся пучков должна была составить 40 ТэВ.

Это почти в три раза превышает максимальную энергию БАК, которая будет достигнута только после проектных работ по усовершенствованию коллайдера, намеченных на 2012 год. Длина ускорительного кольца SSC должна была составить 87,1 км (длина БАК 27км). Строительство должно было завершиться в 1999 году. Реализация проекта началась. Было прорыто 22,5 км тоннеля, залито 17 шахт. К сожалению, впоследствии проект был закрыт.

Не говорит ли все это о конце ускорительной физики? Строительство новых коллайдеров с использованием существующих технологий становится все более затратным. А на реализацию проектов уходят десятилетия. Так, впервые о постройке БАК заговорили в 1984 году, а официальный запуск коллайдера состоялся только в конце 2009 года. Может быть, недалек тот день, когда построить новый коллайдер будет уже не по силам? Возможный выход из этой ситуации состоит в развитии новых технологий.

Плазменные ускорители
Одной из наиболее перспективных технологий является метод плазменного ускорения. В чем его суть? Как было сказано выше, современная технология ускорения практически достигла своего предела. Дальнейшее увеличение ускоряющих полей приводит к возникновению пробоев и разрушению стенок ускоряющих элементов. Но если так, то может быть, вообще можно обойтись без стенок? Большие электрические поля можно создать, например, в плазме. Плазма является газом, состоящим из положительно заряженных ионов и отрицательно заряженных электронов. Обычно плазма электрически нейтральна, так как электроны и ионы равномерно распределены в объеме плазмы. А что если каким-то образом их разделить? Тогда возникшие электрические поля можно использовать для ускорения частиц. Но как добиться такого разделения?

Это можно сделать с помощью импульсного лазера или пучка электронов.

%Сгусток электронов, пролетая через плазму, расталкивает находящиеся на пути электроны плазмы.

Ионы при этом практически не смещаются, в силу того что их масса намного превышает массу электронов. В результате в месте, через которое только что прошел пучок электронов, на какое-то очень непродолжительное время образуется область, заполненная положительным зарядом. Сразу же за ней идет область, в которой электроны плазмы уже вернулись на свои места, сомкнувшись за прошедшим пучком. На границе между этими областями (в очень небольшом объеме) возникают огромные электрические поля. Этот участок передвигается вслед за пучком электронов, а частица, попавшая в этот участок, будет испытывать постоянное ускорение.

По-английски эта технология называется wakefield acceleration, т. е. буквально «ускорение в кильватерной струе». Эта аналогия не случайна. Представьте себе серфера, скользящего на доске по гребню волны. Если это естественная волна, то удовольствие серфера длится недолго (до тех пор, пока волна не ослабеет). Но что, если эту волну постоянно подпитывать? Например, впереди может идти моторная лодка, создавая за собой «кильватерную струю». Серфер может скользить на гребне этой волны. При этом ему даже не понадобится веревка, чтобы держаться за лодку. Нужна только волна.

Описанная идея не нова. Она была впервые сформулирована еще в работах Будкера и Векслера в середине 50-х годов XX века. Однако долгое время оставалась невостребованной из-за большого количества технических проблем и большого резерва обычной технологии ускорения. В настоящий момент технология плазменного ускорения активно развивается. Потенциал огромен! Было показано, что ускоряющие градиенты могут превышать 100 ГэВ/м. Это в 1000 раз больше, чем у CLIC (самого мощного из разрабатываемых электрон-позитронных коллайдеров). С таким темпом ускорения для того чтобы разогнать протоны до энергии БАК, понадобится ускоритель длиной всего в 70 метров (вместо 27 км). К сожалению, не все так просто. И на пути создания такого рода коллайдеров предстоит еще решить огромное количество технических проблем. Для того чтобы использовать создаваемые пучки в экспериментах, необходимо, чтобы энергия частиц в пучке имела примерно одинаковое значение. Долгое время этого не удавалось добиться. Энергия ускоряемых частиц оказывалась разбросанной в чрезвычайно широком диапазоне. Однако в последние годы в решении этого вопроса наметился серьезный прогресс. Другая проблема состоит в масштабировании технологии.

Как поддерживать большой ускоряющий градиент на больших расстояниях?

Ведь изначально такие огромные темпы ускорения удавалось создавать на расстояниях, не превышающих нескольких миллиметров. В решении этого вопроса также есть определенные успехи. Чтобы продемонстрировать принципиальную возможность поддерживать большие градиенты на сравнительно больших расстояниях, был проведен эксперимент. В конце Стэнфордского Линейного Коллайдера (SLC), ускоряющего электроны до энергии 42 ГэВ, была поставлена дополнительная ускорительная секция, основанная на технологии плазменного ускорения. Длина секции составляла около 85 см. При этом энергию электронов там удалось удвоить (максимальная энергия электронов составила 857 ГэВ). Это тем более фантастично, что для того, чтобы разогнать электроны до 42 ГэВ, на самом коллайдере требуется 3 км.

Несмотря на такие успехи, для создания многотэвных коллайдеров, основанных на данной технологии, наверное, понадобятся несколько десятков лет. А вот маленькие ускорители с энергией около 1 ГэВ, умещающиеся на столе, могут появиться в ближайшие несколько лет. Такие ускорители могут быть, например, использованы для создания компактных источников синхротронного излучения.

А что еще?

Рассказывая об ускорителях будущего, я, к сожалению, не смог упомянуть про множество других проектов, целью которых является не покорение новых рубежей энергии, а создание высокоинтенсивных пучков для исследования редких процессов (например, проекты SuperKEKB или SuperB). Не упомянул я и о проектах ионных пучков, таких как создание большого ускорительного комплекса FAIR, модернизации ускорителя RHIC или проекте нового ионного коллайдера NICA в Дубне. Пожалуй, сложно перечислить все в короткой лекции. Хочется надеяться, что большинство этих проектов будет реализовано.

(или БАК) - на данный момент самый большой и мощный ускоритель частиц в мире. Эта махина была запущена в 2008 году, но долго работала на пониженных мощностях. Разберемся, что это такое и зачем нужен большой адронный коллайдер.

История, мифы и факты

Идея создания коллайдера была озвучена в 1984 году. А сам проект на строительство коллайдера был одобрен и принят аж в 1995 году. Разработка принадлежит Европейскому центру ядерных исследований (CERN). Вообще запуск коллайдера привлек к себе большое внимание не только ученых, но и простых людей со всего мира. Говорили о всевозможных страхах и ужасах, связанных с запуском коллайдера.

Впрочем, кто-то и сейчас, вполне возможно, ждет апокалипсиса, связанного с работой БАК и тресется от одной мысли о том, что будет, если ч взорвется большой адронный коллайдер. Хотя, в первую очередь все боялись черной дыры, которая, сначала будучи микроскопической, разрастется и благополучно поглотит сначала сам коллайдер, а за ним Швейцарию и весь остальной мир. Также большую панику вызывала аннигиляционная катастрофа. Группа ученых даже подала в суд, пытаясь остановить строительство. В заявлении говорилось, что сгустки антиматерии, которые могут быть получены в коллайдере, начнут аннигилировать с материей, начнется цепная реакция и вся Вселенная будет уничтожена. Как говорил известный персонаж из «Назад в Будущее»:

Вся Вселенная, конечно, в самом худшем случае. В лучшем – только наша галактика. Доктор Эмет Браун.

А теперь попытаемся понять, почему он адронный? Дело в том, что он работает с адронами, точнее разгоняет, ускоряет и сталкивает адроны.

Адроны – класс элементарных частиц, подверженных сильному взаимодействию. Адроны состоят из кварков.

Адроны делятся на барионы и мезоны. Чтобы было проще, скажем, что из барионов состоит почти все известное нам вещество. Упростим еще больше и скажем, что барионы - это нуклоны (протоны и нейтроны, составляющие атомное ядро).

Как работает большой адронный коллайдер

Масштаб очень впечатляет. Коллайдер представляет собой кольцевой туннель, залегающий под землей на глубине ста метров. Длина большого адронного коллайдера составялет 26 659 метров. Протоны, разогнанные до скоростей близких к скорости света, пролетают в подземном круге по территории Франции и Швейцарии. Если говорить точно, то глубина залегания туннеля лежит в пределах от 50 до 175 метров. Для фокусировки и удержания пучков летящих протонов используются сверхпроводящие магниты, их общая длина составляет около 22 километров, а работают они при температуре -271 градусов по Цельсию.

В составе коллайдера 4 гигантских детектора: ATLAS, CMS, ALICE и LHCb. Помимо основных больших детекторов, есть еще и вспомогательные. Детекторы предназначены для фиксации результатов столкновений частиц. То есть после того, как на околосветовых скоростях сталкиваются два протона, никто не знает чего ожидать. Чтобы «увидеть», что получилось, куда отскочило и как далеко улетело, и существуют детекторы, напичканные всевозможными датчиками.

Результаты работы большого адронного коллайдера.

Зачем нужен коллайдер? Ну уж точно не для того, чтобы уничтожить Землю. Казалось бы, какой смысл сталкивать частицы? Дело в том, что вопросов без ответов в современной физике очень много, и изучение мира с помощью разогнанных частиц может в буквальном смысле открыть новый пласт реальности, понять устройство мира, а может быть даже ответить на главный вопрос «смысла жизни, Вселенной и вообще».

Какие открытия уже совершили на БАК? Самое знаменитое – это открытие бозона Хиггса (ему мы посвятим отдельную статью). Помимо того были открыты 5 новых частиц , получены первые данные столкновений на рекордных энергиях , показано отсутствие асимметрии протонов и антипротонов , обнаружены необычные корреляции протонов . Список можно продолжать долго. А вот микроскопических черных дыр, которые наводили страх на домохозяек, обнаружить не удалось.

И это при том, что коллайдер еще не разогнали до его максимальной мощности. Сейчас максимальная энергия большого адронного коллайдера – 13 ТэВ (тера электрон-Вольт). Однако, после соответствующей подготовки протоны планируют разогнать до 14 ТэВ . Для сравнения, в ускорителях- предшественниках БАК максимально полученные энергии не превышали 1 ТэВ . Так разгонять частицы мог американский ускоритель Тэватрон из штата Иллинойс. Энергия, достигнутая в коллайдере - далеко не самая Большая в мире. Так, энергия космических лучей, зафиксированных на Земле, превышает энергию частицы, разогнанной в коллайдере в миллиард раз! Так что, опасность большого адронного коллайдера минимальна. Вполне вероятно, что после того, как все ответы будут получены с помощью БАК, человечеству придется строить еще один коллайдер по-мощнее.

Друзья, любите науку, и она обязательно полюбит Вас! А помочь Вам полюбить науку легко смогут . Обращайтесь за помощью, и пусть учеба приносит радость!

Разгоняемые в БАК элементарные частицы имеют заряд. Если речь идет, например, о протонах, этот заряд будет положительным. На находящуюся в электрическом поле частицу действует сила, которая придает ей ускорение. Именно этот физический принцип лежит в основе работы ускорительных секций БАК. С точки зрения инженерного воплощения этого принципа все, конечно, несколько сложнее. В БАК частицы ускоряются в резонаторах — камерах сложной формы. В резонаторах возбуждается мощная стоячая электромагнитная волна (в чем-то ее можно уподобить колебанию струны), фазы колебаний которой согласованы с прохождением по камере сгустка заряженных частиц таким образом, чтобы волна (в микроволновом диапазоне) все время «подталкивала» его в заданном направлении. Если частицу в БАК ускоряет электрическое поле, то направление ей задает поле магнитное. Именно каскад из сверхпроводящих магнитов постоянно отклоняет путь частицы, чтобы она двигалась не по прямой, а описывала 27-километровые круги. Кроме того, магниты отвечают за фокусирование пучка.

Почему радуга иногда видна в виде полной дуги, а иногда лишь в виде фрагментов?

В идеальном случае радуга имеет форму дуги от горизонта до горизонта, с высоты можно даже наблюдать радугу, имеющую полную кольцевую форму. Хорошо известно, что это явление возникает из-за преломления солнечных лучей в капле воды, но, если воздух насыщен влагой лишь на отдельных участках, в дуге могут возникнуть разрывы.

Каким образом из воздуха извлекается азот?

Существует несколько промышленных методов извлечения азота из атмосферного воздуха. Один из них — фракционная дистилляция сжиженного воздуха. Дело в том, что температура кипения азота (-195°C) ниже, чем температура кипения кислорода (-183°C). Поэтому при постепенном нагревании жидкого воздуха сначала испарится азот, а кислород останется в жидкой фазе. Так эти газы можно разделить.

Почему человек чихает, когда ему холодно?

Главная причина чихания, то есть взрывного выдоха через нос, — потребность организма выбросить из носоглотки некие инородные раздражители ее слизистой оболочки, например пыль или соринки. Такая же реакция следует на воспаление слизистой. Однако нервные окончания, которые подают сигнал центру в продолговатом мозге, ответственному за чихание, реагируют и на другие раздражители. Например, резкую смену температуры окружающего воздуха или даже яркий свет.

Как спят киты?

Это один из интереснейших вопросов науки о морских животных. Дело в том, что в отличие от человека, дыхание которого может управляться неосознанно, киты делают вдох и выдох сознательным усилием. Иными словами, мы можем продолжать дышать, находясь без сознания, а кит не может. Исследования дельфинов показали, что эти представители китообразных умеют спать по очереди то одним полушарием, то другим. Но недавно ученые из шотландского университета Сент-Эндрю выяснили, что, например, кашалоты способны засыпать полностью, обоими полушариями. Эти животные временами «дрейфуют» под водой в вертикальном положении, причем практически не реагируют при этом на внешние раздражители. Оказалось, что кашалоты все же улучают небольшие промежутки времени для полноценного сна. Поспав 10−15 минут, они пробуждаются, выныривают к поверхности, делают вдох и вновь погружаются под воду для очередной порции дремы.