Какая самая большая литосферная плита. Согласно научным исследованиям, учёным удалось установить, что литосфера состоит из

Как появились материки и острова? От чего зависит название наиболее крупных плит Земли? Откуда взялась наша планета?

Как всё начиналось?

Каждый хоть раз задумывался о происхождении нашей планеты. Для глубоко верующих людей всё просто: Землю за 7 дней создал Бог - и точка. Они непоколебимы в своей уверенности, даже зная названия крупнейших образовавшихся в результате эволюции поверхности планеты. Для них зарождение нашей твердыни - это чудо, и никакие доводы геофизиков, естествоиспытателей и астрономов не способны их переубедить.

Учёные, однако, придерживаются иного мнения, основываясь на гипотезах и предположениях. Имеено они строят догадки, выдвигают версии и придумавают всему название. Наиболее крупных плит Земли это тоже коснулось.

На данный момент достоверно неизвестно, каким образом появилась наша твердь, однако есть много интересных мнений. Именно учёные единогласно постановили, что когда-то существовал единый гиганстский материк, в результате катаклизмов и природных процессов расколовшийся на части. Также учёные придумали не только название наиболее крупных плит Земли, но и обозначили малые.

Теория на грани фантастики

Например, и Пьер Лаплас - учёные из Германии - считали, что Вселенная появилась из газовой туманности, а Земля - это постепенно остывающая планета, земная кора которой - не что иное, как охлаждённая поверхность.

Другой учёный, полагал, что Солнце при прохождении через газопылевое облако часть его захватило за собой. Его версия состоит в том, что наша Земля никогда не была полностью расплавленным веществом и изначально представляла собой холодную планету.

Если верить теории английского учёного Фреда Хойла, Солнце имело свою звезду-близнеца, которая взорвалась, подобно сверхновой. Почти все осколки отбросило на огромные расстояний, а небольшое количество оставшихся вокруг Солнца превратились в планеты. Один из таких осколков и стал колыбелью человечества.

Версия как аксиома

Самая распространенная история возникновения Земли состоит в следующем:

  • Около 7 миллиардов лет назад образовалась первичная холодная планета, после чего её недра начали постепенно разогреваться.
  • Затем, во времена так называемой «лунной эры», раскалённая лава в гигантских количествах излилась на поверхность. Это повлекло за собой формирование первичной атмосферы и послужило толчком для образования земной коры - литосферы.
  • Благодаря первичной атмосфере на планете появились океаны, в результате чего Земля была покрыта плотной оболочкой, представляя собой очертания океанических впадин и континентальных выступов. В те далёкие времена площадь воды значительно преобладала над площадью суши. К слову, и верхняя часть мантии называется литосферой, которая образует литосферные плиты, составляющие общий "облик" Земли. Названия наиболее крупных плит соответствуют своему географическому положению.

Гигантский раскол

Как же образовались континенты и литосферные плиты? Около 250 миллионов лет назад Земля выглядела совершенно не так, как сейчас. Тогда на нашей планете был всего один, просто-таки гигантский материк под названием Пангея. Его общая площадь впечатляла и равнялась площади всех ныне существующих материков, включая острова. Пангея со всех сторон омывалась океаном, который назывался Панталасса. Этот огромнейший океан занимал всю оставшуюся поверхность планеты.

Однако существование суперматерика оказалось недолговечным. Внутри Земли бурлили процессы, в результате которых вещество мантии начало растекаться в разные стороны, постепенно растягивая материк. Из-за этого Пангея сначала разъединилась на 2 части, образовав два континента - Лавразию и Гондвану. Затем и эти материки постепенно раскололись на множество частей, которые постепенно разошлись в разные стороны. Помимо новых материков, появились литосферные плиты. Из названия наиболее крупных плит становится понятным, в каких местах образовались гигантские разломы.

Остатки Гондваны - это известные нам Австралия и Антарктида, а также Южно-Африканская и Африканская литосферные плиты. Доказано, что эти плиты и в наше время постепенно расходятся - скорость из движения составляет 2 см в год.

Осколки Лавразии превратились в две литосферные плиты - Северо-Американскую и Евразийскую. При этом Евразия состоит не только из осколка Лавразии, но и из частей Гондваны. Названия наиболее крупных плит, формирующих Евразию - Индостанская, Аравийская и Евразийская.

В образовании Евразийского континента непосредственное участие принимает Африка. Её литосферная плита медленно сближается с Евразийской, образуя горы и возвышенности. Именно из-за этого "союза" появились Карпаты, Пиренеи, Альпы и Судеты.

Список литосферных плит

Названия наиболее крупных плит таковы:

  • Южно-Американская;
  • Австралийская;
  • Евразийская;
  • Северо-Американская;
  • Антарктическая;
  • Тихоокеанская;
  • Южно-Американская;
  • Индостанская.

Плиты среднего размера - это:

  • Аравийская;
  • Наска;
  • Скотия;
  • Филлипинская;
  • Кокос;
  • Хуан-де-Фука.

Литосферные плиты Земли представляют собой огромные глыбы. Их фундамент образован сильно смятыми в складки гранитными метаморфизированными магматическими породами. Названия литосферных плит будут приведены в статье ниже. Сверху они прикрыты трех-четырехкилометровым "чехлом". Он сформирован из осадочных пород. Платформа имеет рельеф, состоящий из отдельных горных хребтов и обширных равнин. Далее будет рассмотрена теория движения литосферных плит.

Появление гипотезы

Теория движения литосферных плит появилась в начале двадцатого столетия. Впоследствии ей суждено было сыграть основную роль в исследованиях планеты. Ученый Тейлор, а после него и Вегенер, выдвинул гипотезу о том, что с течением времени происходит дрейф литосферных плит в горизонтальном направлении. Однако в тридцатые годы 20-го века утвердилось другое мнение. Согласно ему, перемещение литосферных плит осуществлялось вертикально. В основе этого явления лежал процесс дифференциации мантийного вещества планеты. Оно стало называться фиксизмом. Такое наименование было обусловлено тем, что признавалось постоянно фиксированное положение участков коры относительно мантии. Но в 1960-м году после открытия глобальной системы срединно-океанических хребтов, которые опоясывают всю планету и выходят в некоторых районах на сушу, произошел возврат к гипотезе начала 20-го столетия. Однако теория обрела новую форму. Тектоника глыб стала ведущей гипотезой в науках, изучающих структуру планеты.

Основные положения

Было определено, что существуют крупные литосферные плиты. Их количество ограниченно. Также существуют литосферные плиты Земли меньшего размера. Границы между ними проводят по сгущению в очагах землетрясений.

Названия литосферных плит соответствуют расположенным над ними материковым и океаническим областям. Глыб, имеющих огромную площадь, всего семь. Наибольшие литосферные плиты - это Южно- и Северо-Американские, Евро-Азиатская, Африканская, Антарктическая, Тихоокеанская и Индо-Австралийская.

Глыбы, плывущие по астеносфере, отличаются монолитностью и жесткостью. Приведенные выше участки - это основные литосферные плиты. В соответствии с начальными представлениями считалось, что материки прокладывают себе дорогу через океаническое дно. При этом движение литосферных плит осуществлялось под воздействием невидимой силы. В результате проведенных исследований было выявлено, что глыбы плывут пассивно по материалу мантии. Стоит отметить, что их направление сначала вертикально. Мантийный материал поднимается под гребнем хребта вверх. Затем происходит распространение в обе стороны. Соответственно, наблюдается расхождение литосферных плит. Данная модель представляет океаническое дно в качестве гигантской Она выходит на поверхность в рифтовых областях срединно-океанических хребтов. Затем скрывается в глубоководных желобах.

Расхождение литосферных плит провоцирует расширение океанических лож. Однако объем планеты, несмотря на это, остается постоянным. Дело в том, что рождение новой коры компенсируется ее поглощением в участках субдукции (поддвига) в глубоководных желобах.

Почему происходит движение литосферных плит?

Причина состоит в тепловой конвекции мантийного материала планеты. Литосфера подвергается растяжению и испытывает подъем, что происходит над восходящими ветвями от конвективных течений. Это провоцирует движение литосферных плит в стороны. По мере удаления от срединно-океанических рифтов происходит уплотнение платформы. Она тяжелеет, ее поверхность опускается вниз. Этим объясняется увеличение океанической глубины. В итоге платформа погружается в глубоководные желоба. При затухании от разогретой мантии она охлаждается и опускается с формированием бассейнов, которые заполняются осадками.

Зоны столкновения литосферных плит - это области, где кора и платформа испытывают сжатие. В связи с этим мощность первой повышается. В результате начинается восходящее движение литосферных плит. Оно приводит к формированию гор.

Исследования

Изучение сегодня осуществляется с применением геодезических методов. Они позволяют сделать вывод о непрерывности и повсеместности процессов. Выявляются также зоны столкновения литосферных плит. Скорость подъема может составлять до десятка миллиметров.

Горизонтально крупные литосферные плиты плывут несколько быстрее. В этом случае скорость может составить до десятка сантиметров в течение года. Так, к примеру, Санкт-Петербург поднялся уже на метр за весь период своего существования. Скандинавский полуостров - на 250 м за 25 000 лет. Мантийный материал движется сравнительно медленно. Однако в результате происходят землетрясения, и прочие явления. Это позволяет сделать вывод о большой мощности перемещения материала.

Используя тектоническую позицию плит, исследователи объясняют множество геологических явлений. Вместе с этим в ходе изучения выяснилась намного большая, нежели это представлялось в самом начале появления гипотезы, сложность процессов, происходящих с платформой.

Тектоника плит не смогла объяснить изменения интенсивности деформаций и движения, наличие глобальной устойчивой сети из глубоких разломов и некоторые другие явления. Остается также открытым вопрос об историческом начале действия. Прямые признаки, указывающие на плитно-тектонические процессы, известны с периода позднего протерозоя. Однако ряд исследователей признает их проявление с архея или раннего протерозоя.

Расширение возможностей для исследования

Появление сейсмотомографии обусловило переход этой науки на качественно новый уровень. В середине восьмидесятых годов прошлого века глубинная геодинамика стала самым перспективным и молодым направлением из всех существовавших наук о Земле. Однако решение новых задач осуществлялось с использованием не только сейсмотомографии. На помощь пришли и прочие науки. К ним, в частности, относят экспериментальную минералогию.

Благодаря наличию нового оборудования появилась возможность изучать поведение веществ при температурах и давлениях, соответствующих максимальным на глубинах мантии. Также в исследованиях использовались методы изотопной геохимии. Эта наука изучает, в частности, изотопный баланс редких элементов, а также благородных газов в различных земных оболочках. При этом показатели сравниваются с метеоритными данными. Применяются методы геомагнетизма, с помощью которых ученые пытаются раскрыть причины и механизм инверсий в магнитном поле.

Современная картина

Гипотеза тектоники платформы продолжает удовлетворительно объяснять процесс развития коры в течение хотя бы последних трех миллиардов лет. При этом имеются спутниковые измерения, в соответствии с которыми подтвержден факт того, что основные литосферные плиты Земли не стоят на месте. В результате вырисовывается определенная картина.

В поперечном сечении планеты присутствует три самых активных слоя. Мощность каждого из них составляет несколько сотен километров. Предполагается, что исполнение главной роли в глобальной геодинамике возложено именно на них. В 1972 году Морган обосновал выдвинутую в 1963-м Вилсоном гипотезу о восходящих мантийных струях. Эта теория объяснила явление о внутриплитном магнетизме. Возникшая в результате плюм-тектоника становится с течением времени все более популярной.

Геодинамика

С ее помощью рассматривается взаимодействие достаточно сложных процессов, которые происходят в мантии и коре. В соответствии с концепцией, изложенной Артюшковым в его труде "Геодинамика", в качестве основного источника энергии выступает гравитационная дифференциация вещества. Этот процесс отмечается в нижней мантии.

После того как от породы отделяются тяжелые компоненты (железо и прочее), остается более легкая масса твердых веществ. Она опускается в ядро. Расположение более легкого слоя под тяжелым неустойчиво. В связи с этим накапливающийся материал собирается периодически в достаточно крупные блоки, которые всплывают в верхние слои. Размер подобных образований составляет около ста километров. Этот материал явился основой для формирования верхней

Нижний слой, вероятно, представляет собой недифференцированное первичное вещество. В ходе эволюции планеты за счет нижней мантии происходит рост верхней и увеличение ядра. Более вероятно, что блоки легкого материала поднимаются в нижней мантии вдоль каналов. В них температура массы достаточно высока. Вязкость при этом существенно снижена. Повышению температуры способствует выделение большого объема потенциальной энергии в процессе подъема вещества в область силы тяжести примерно на расстояние в 2000 км. По ходу движения по такому каналу происходит сильный нагрев легких масс. В связи с этим в мантию вещество поступает, обладая достаточно высокой температурой и значительно меньшим весом в сравнении с окружающими элементами.

За счет пониженной плотности легкий материал всплывает в верхние слои до глубины в 100-200 и менее километров. С понижением давления падает температура плавления компонентов вещества. После первичной дифференциации на уровне "ядро-мантия" происходит вторичная. На небольших глубинах легкое вещество частично подвергается плавлению. При дифференциации выделяются более плотные вещества. Они погружаются в нижние слои верхней мантии. Выделяющиеся более легкие компоненты, соответственно, поднимаются вверх.

Комплекс движений веществ в мантии, связанных с перераспределением масс, обладающих разной плотностью в результате дифференциации, называют химической конвекцией. Подъем легких масс происходит с периодичностью примерно в 200 млн лет. При этом внедрение в верхнюю мантию отмечается не повсеместно. В нижнем слое каналы располагаются на достаточно большом расстоянии друг от друга (до нескольких тысяч километров).

Подъем глыб

Как было выше сказано, в тех зонах, где происходит внедрение крупных масс легкого нагретого материала в астеносферу, происходит частичное его плавление и дифференциация. В последнем случае отмечается выделение компонентов и последующее их всплытие. Они достаточно быстро проходят сквозь астеносферу. При достижении литосферы их скорость снижается. В некоторых областях вещество формирует скопления аномальной мантии. Они залегают, как правило, в верхних слоях планеты.

Аномальная мантия

Ее состав приблизительно соответствует нормальному мантийному веществу. Отличием аномального скопления является более высокая температура (до 1300-1500 градусов) и сниженная скорость упругих продольных волн.

Поступление вещества под литосферу провоцирует изостатическое поднятие. В связи с повышенной температурой аномальное скопление обладает более низкой плотностью, чем нормальная мантия. Кроме того, отмечается небольшая вязкость состава.

В процессе поступления к литосфере аномальная мантия довольно быстро распределяется вдоль подошвы. При этом она вытесняет более плотное и менее нагретое вещество астеносферы. По ходу движения аномальное скопление заполняет те участки, где подошва платформы находится в приподнятом состоянии (ловушки), а глубоко погруженные области она обтекает. В итоге в первом случае отмечается изостатическое поднятие. Над погруженными же областями кора остается стабильной.

Ловушки

Процесс охлаждения мантийного верхнего слоя и коры до глубины примерно ста километров происходит медленно. В целом он занимает несколько сотен миллионов лет. В связи с этим неоднородности в мощности литосферы, объясняемые горизонтальными температурными различиями, обладают достаточно большой инерционностью. В том случае, если ловушка располагается неподалеку от восходящего потока аномального скопления из глубины, большое количество вещества захватывается сильно нагретым. В итоге формируется достаточно крупный горный элемент. В соответствии с данной схемой происходят высокие поднятия на участке эпиплатформенного орогенеза в

Описание процессов

В ловушке аномальный слой в ходе охлаждения подвергается сжатию на 1-2 километра. Кора, расположенная сверху, погружается. В сформировавшемся прогибе начинают скапливаться осадки. Их тяжесть способствует еще большему погружению литосферы. В итоге глубина бассейна может составить от 5 до 8 км. Вместе с этим при уплотнении мантии в нижнем участке базальтового слоя в коре может отмечаться фазовое превращение породы в эклогит и гранатовый гранулит. За счет выходящего из аномального вещества теплового потока происходит прогревание вышележащей мантии и понижение ее вязкости. В связи с этим наблюдается постепенное вытеснение нормального скопления.

Горизонтальные смещения

При образовании поднятий в процессе поступления аномальной мантии к коре на континентах и океанах происходит увеличение потенциальной энергии, запасенной в верхних слоях планеты. Для сброса излишков вещества стремятся разойтись в стороны. В итоге формируются добавочные напряжения. С ними связаны разные типы движения плит и коры.

Разрастание океанического дна и плавание материков являются следствием одновременного расширения хребтов и погружения платформы в мантию. Под первыми располагаются крупные массы из сильно нагретого аномального вещества. В осевой части этих хребтов последнее находится непосредственно под корой. Литосфера здесь обладает значительно меньшей мощностью. Аномальная мантия при этом растекается в участке повышенного давления - в обе стороны из-под хребта. Вместе с этим она достаточно легко разрывает кору океана. Расщелина наполняется базальтовой магмой. Она, в свою очередь, выплавляется из аномальной мантии. В процессе застывания магмы формируется новая Так происходит разрастание дна.

Особенности процесса

Под срединными хребтами аномальная мантия обладает сниженной вязкостью вследствие повышенной температуры. Вещество способно достаточно быстро растекаться. В связи с этим разрастание дна происходит с повышенной скоростью. Относительно низкой вязкостью также обладает океаническая астеносфера.

Основные литосферные плиты Земли плывут от хребтов к местам погружения. Если эти участки находятся в одном океане, то процесс происходит со сравнительно высокой скоростью. Такая ситуация характерна сегодня для Тихого океана. Если разрастание дна и погружение происходит в разных областях, то расположенный между ними континент дрейфует в ту сторону, где происходит углубление. Под материками вязкость астеносферы выше, чем под океанами. В связи с возникающим трением появляется значительное сопротивление движению. В результате снижается скорость, с которой происходит расширение дна, если отсутствует компенсация погружения мантии в той же области. Таким образом, разрастание в Тихом океане происходит быстрее, чем в Атлантическом.

Тектоника плит (plate tectonics ) - современная геодинамическая концепция, основанная на положении о крупномасштабных горизонтальных перемещениях относительно целостных фрагментов литосферы (литосферных плит). Таким образом, тектоника плит рассматривает движения и взаимодействия литосферных плит.

Впервые предположение о горизонтальном движении блоков коры было высказано Альфредом Вегенером в 1920-х годах в рамках гипотезы «дрейфа континентов», но поддержки эта гипотеза в то время не получила. Лишь в 1960-х годах исследования дна океанов дали неоспоримые доказательства горизонтальных движении плит и процессов расширения океанов за счёт формирования (спрединга) океанической коры. Возрождение идей о преобладающей роли горизонтальных движений произошло в рамках «мобилистического» направления, развитие которого и повлекло разработку современной теории тектоники плит. Основные положения тектоники плит сформулированы в 1967-68 группой американских геофизиков - У. Дж. Морганом, К. Ле Пишоном, Дж. Оливером, Дж. Айзексом, Л. Сайксом в развитие более ранних (1961-62) идей американских учёных Г. Хесса и Р. Дигца о расширении (спрединге) ложа океанов

Основные положения тектоники плит

Основные положения тектоники плит можно свети к нескольким основополагающим

1. Верхняя каменная часть планеты разделена на две оболочки, существенно различающиеся по реологическим свойствам: жесткую и хрупкую литосферу и подстилающую её пластичную и подвижную астеносферу.

2. Литосфера разделена по плиты, постоянно движущиеся по поверхности пластичной астеносферы. Литосфера делится на 8 крупных плит, десятки средних плит и множество мелких. Между крупными и средними плитами располагаются пояса, сложенные мозаикой мелких коровых плит.

Границы плит являются областями сейсмической, тектонической и магматической активности; внутренние области плит слабо сейсмичны и характеризуются слабой проявленностью эндогенных процессов.

Более 90 % поверхности Земли приходится на 8 крупных литосферных плит:

Австралийская плита,
Антарктическая плита,
Африканская плита,
Евразийская плита,
Индостанская плита,
Тихоокеанская плита,
Северо-Американская плита,
Южно-Американская плита.

Средние плиты: Аравийская (субконтинент), Карибская, Филиппинская, Наска и Кокос и Хуан де Фука и др..

Некоторые литосферные плиты сложены исключительно океанической корой (например, Тихоокеанская плита), другие включают фрагменты и океанической и континентальной коры.

3. Различают три типа относительных перемещений плит: расхождение (дивергенция), схождение (конвергенция) и сдвиговые перемещения .

Соответственно, выделяются и три типа основных границ плит.

Дивергентные границы – границы, вдоль которых происходит раздвижение плит.

Процессы горизонтального растяжения литосферы называют рифтогенезом . Эти границы приурочены к континентальным рифтам и срединно-океанических хребтам в океанических бассейнах.

Термин «рифт» (от англ. rift – разрыв, трещина, щель) применяется к крупным линейным структурам глубинного происхождения, образованным в ходе растяжения земной коры. В плане строения они представляют собой грабенообразные структуры.

Закладываться рифты могут и на континентальной, и на океанической коре, образуя единую глобальную систему, ориентированную относительно оси геоида. При этом эволюция континентальных рифтов может привести к разрыву сплошности континентальной коры и превращению этого рифта в рифт океанический (если расширение рифта прекращается до стадии разрыва континентальной коры, он заполняется осадками, превращаясь в авлакоген).


Процесс раздвижения плит в зонах океанских рифтов (срединно-океанических хребтов) сопровождается образованием новой океанической коры за счёт магматических базальтовых расплав поступающих из астеносферы. Такой процесс образования новой океанической коры за счёт поступления мантийного вещества называется спрединг (от англ. spread – расстилать, развёртывать) .

Строение срединно-океанического хребта

В ходе спрединга каждый импульс растяжения сопровождается поступлением новой порции мантийных расплавов, которые, застывая, наращивают края расходящихся от оси СОХ плит.

Именно в этих зонах происходит формирование молодой океанической коры.

Конвергентные границы – границы, вдоль которых происходит столкновение плит. Главных вариантов взаимодействия при столкновении может быть три: «океаническая – океаническая», «океаническая – континентальная» и «континентальная - континентальная» литосфера. В зависимости от характера сталкивающихся плит, может протекать несколько различных процессов.

Субдукция – процесс поддвига океанской плиты под континентальную или другую океаническую. Зоны субдукции приурочены к осевым частям глубоководных желобов, сопряжённых с островными дугами (являющихся элементами активных окраин). На субдукционные границы приходится около 80% протяжённости всех конвергентных границ.

При столкновении континентальной и океанической плит естественным явлением является поддвиг океанической (более тяжёлой) под край континентальной; при столкновении двух океанических погружается более древняя (то есть более остывшая и плотная) из них.

Зоны субдукции имеют характерное строение: их типичными элементами служат глубоководный желоб – вулканическая островная дуга – задуговый бассейн. Глубоководный желоб образуется в зоне изгиба и поддвига субдуцирующей плиты. По мере погружения эта плита начинает терять воду (находящуюся в изобилии в составе осадков и минералов), последняя, как известно, значительно снижает температуру плавления пород, что приводит к образованию очагов плавления, питающих вулканы островных дуг. В тылу вулканической дуги обычно происходит некоторое растяжение, определяющее образование задугового бассейна. В зоне задугового бассейна растяжение может быть столь значительным, что приводит к разрыву коры плиты и раскрытию бассейна с океанической корой (так называемый процесс задугового спрединга).

Погружение субдуцирующей плиты в мантию трассируется очагами землетрясений, возникающих на контакте плит и внутри субдуцирующей плиты (более холодной и вследствие этого более хрупкой, чем окружающие мантийные породы). Эта сейсмофокальная зона получила название зона Беньофа-Заварицкого .

В зонах субдукции начинается процесс формирования новой континентальной коры.

Значительно более редким процессом взаимодействия континентальной и океанской плит служит процесс обдукции – надвигания части океанической литосферы на край континентальной плиты. Следует подчеркнуть, что в ходе этого процесса происходит расслоение океанской плиты, и надвигается лишь её верхняя часть – кора и несколько километров верхней мантии.

При столкновении континентальных плит, кора которых более лёгкая, чем вещество мантии, и вследствие этого не способна в неё погрузиться, протекает процесс коллизии . В ходе коллизии края сталкивающихся континентальных плит дробятся, сминаются, формируются системы крупных надвигов, что приводит к росту горных сооружений со сложным складчато-надвиговым строением. Классическим примером такого процесса служит столкновение Индостанской плиты с Евразийской, сопровождающееся ростом грандиозных горных систем Гималаев и Тибета.

Модель процесса коллизии

Процесс коллизии сменяет процесс субдукции, завершая закрытие океанического бассейна. При этом в начале коллизионного процесса, когда края континентов уже сблизились, коллизия сочетается с процессом субдукции (продолжается погружение под край континента остатков океанической коры).

Для коллизионных процессов типичны масштабный региональный метаморфизм и интрузивный гранитоидный магматизм. Эти процессы приводят к созданию новой континентальной коры (с её типичным гранито-гнейсовым слоем).

Трансформные границы – границы, вдоль которых происходят сдвиговые смещения плит.

Границы литосферных плит Земли

1 – дивергентные границы (а – срединно-океанские хребты, б – континентальные рифты); 2 – трансформные границы; 3 – конвергентные границы (а – островодужные, б – активные континентальные окраины, в – коллизионные); 4 – направления и скорости (см/год) движения плит.

4. Объём поглощённой в зонах субдукции океанской коры равен объёму коры, возникающей в зонах спрединга. Это положении подчёркивает мнение о постоянстве объёма Земли. Но такое мнение не является единственным и окончательно доказанным. Не исключено, что объём планы меняется пульсационно, или происходит уменьшение его уменьшение за счёт охлаждения.

5. Основной причиной движения плит служит мантийная конвекция , обусловленная мантийными теплогравитационными течениями.

Источником энергии для этих течений служит разность температуры центральных областей Земли и температуры близповерхностных её частей. При этом основная часть эндогенного тепла выделяется на границе ядра и мантии в ходе процесса глубинной дифференциации, определяющего распад первичного хондритового вещества, в ходе которого металлическая часть устремляется к центру, наращивая ядро планеты, а силикатная часть концентрируются в мантии, где далее подвергается дифференциации.

Нагретые в центральных зонах Земли породы расширяются, плотность их уменьшается, и они всплывают, уступая место опускающимся более холодными и потому более тяжёлым массам, уже отдавшим часть тепла в близповерхностных зонах. Этот процесс переноса тепла идёт непрерывно, в результате чего возникают упорядоченные замкнутые конвективные ячейки. При этом в верхней части ячейки течение вещества происходит почти в горизонтальной плоскости, и именно эта часть течения определяет горизонтальное перемещение вещества астеносферы и расположенных на ней плит. В целом, восходящие ветви конвективных ячей располагаются под зонами дивергентных границ (СОХ и континентальными рифтами), нисходящие – под зонами конвергентных границ.

Таким образом, основная причина движения литосферных плит – «волочение» конвективными течениями.

Кроме того, на плиты действуют ещё рад факторов. В частности, поверхность астеносферы оказывается несколько приподнятой над зонами восходящих ветвей и более опущенной в зонах погружения, что определяет гравитационное «соскальзывание» литосферной плиты, находящейся на наклонной пластичной поверхности. Дополнительно действуют процессы затягивания тяжёлой холодной океанской литосферы в зонах субдукции в горячую, и как следствие менее плотную, астеносферу, а также гидравлического расклинивания базальтами в зонах СОХ.

Рисунок - Силы, действующие на литосферные плиты.

К подошве внутриплитовых частей литосферы приложены главные движущие силы тектоники плит – силы мантийного “волочения” (англ. drag) FDO под океанами и FDC под континентами, величина которых зависит в первую очередь от скорости астеносферного течения, а последняя определяется вязкостью и мощностью астеносферного слоя. Так как под континентами мощность астеносферы значительно меньше, а вязкость значительно больше, чем под океанами, величина силы FDC почти на порядок уступает величине FDO . Под континентами, особенно их древними частями (материковыми щитами), астеносфера почти выклинивается, поэтому континенты как бы оказываются “сидящими на мели”. Поскольку большинство литосферных плит современной Земли включают в себя как океанскую, так и континентальную части, следует ожидать, что присутствие в составе плиты континента в общем случае должно “тормозить” движение всей плиты. Так оно и происходит в действительности (быстрее всего движутся почти чисто океанские плиты Тихоокеанская, Кокос и Наска; медленнее всего – Евразийская, Северо-Американская, Южно-Американская, Антарктическая и Африканская, значительную часть площади которых занимают континенты). Наконец, на конвергентных границах плит, где тяжелые и холодные края литосферных плит (слэбы) погружаются в мантию, их отрицательная плавучесть создает силу FNB (индекс в обозначении силы – от английского negative buoyance ). Действие последней приводит к тому, что субдуцирующая часть плиты тонет в астеносфере и тянет за собой всю плиту, увеличивая тем самым скорость ее движения. Очевидно, сила FNB действует эпизодически и только в определенных геодинамических обстановках, например в случаях описанного выше обрушения слэбов через раздел 670 км.

Таким образом, механизмы, приводящие в движение литосферные плиты, могут быть условно отнесены к следующим двум группам: 1) связанные с силами мантийного “волочения” (mantle drag mechanism ), приложенными к любым точкам подошвы плит, на рис. 2.5.5 – силы FDO и FDC ; 2) связанные с силами, приложенными к краям плит (edge-force mechanism ), на рисунке – силы FRP и FNB . Роль того или иного движущего механизма, а также тех или иных сил оценивается индивидуально для каждой литосферной плиты.

Совокупность этих процессов отражает общий геодинамический процесс, охватывающих области от поверхностных до глубинных зон Земли.

Мантийная конвекция и геодинамические процессы

В настоящее время в мантии Земли развивается двухъячейковая мантийная конвекция с закрытыми ячейками (согласно модели сквозьмантийной конвекции) или раздельная конвекция в верхней и нижней мантии с накоплением слэбов под зонами субдукции (согласно двухъярусной модели). Вероятные полюсы подъема мантийного вещества расположены в северо-восточной Африке (примерно под зоной сочленения Африканской, Сомалийской и Аравийской плит) и в районе острова Пасхи (под срединным хребтом Тихого океана – Восточно-Тихоокеанским поднятием).

Экватор опускания мантийного вещества проходит примерно по непрерывной цепи конвергентных границ плит по периферии Тихого и восточной части Индийского океанов.

Современный режим мантийной конвекции, начавшийся примерно 200 млн. лет назад распадом Пангеи и породивший современные океаны, в будущем сменится на одноячейковый режим (по модели сквозьмантийной конвекции) или (по альтернативной модели) конвекция станет сквозьмантийной за счет обрушения слэбов через раздел 670 км. Это, возможно, приведет к столкновению материков и формированию нового суперконтинента, пятого по счету в истории Земли.

6. Перемещения плит подчиняются законам сферической геометрии и могут быть описаны на основе теоремы Эйлера. Теорема вращения Эйлера утверждает, что любое вращение трёхмерного пространства имеет ось. Таким образом, вращение может быть описана тремя параметрами: координаты оси вращения (например, её широта и долгота) и угол поворота. На основании этого положения может быть реконструировано положение континентов в прошлые геологические эпохи. Анализ перемещений континентов привёл к выводу, что каждые 400-600 млн. лет они объединяются в единый суперконтинент, подвергающийся в дальнейшем распаду. В результате раскола такого суперконтинента Пангеи, произошедшего 200-150 млн. лет назад, и образовались современные континенты.

Некоторые доказательства реальности механизма тектоники литосферных плит

Удревнение возраста океанической коры по мере удаления от осей спрединга (см. рисунок). В этом же направлении отмечается нарастание мощности и стратиграфической полноты осадочного слоя.

Рисунок - Карта возраста пород океанического дна Северной Атлантики (по У. Питмену и М. Тальвани, 1972). Разным цветом выделены участки океанского дна различных возрастных интервалов; цифрами указан возраст в миллионах лет.

Геофизические данные.

Рисунок – Томографический профиль через Эллинский желоб, остров Крит и Эгейское море. Серые кружки – гипоцентры землетрясений. Синим цветом показана пластина погружающейся холодной мантии, красным – горячая мантия (по данным В. Спэкмена, 1989)

Остатки огромной плиты Фаралон, исчезнувшей в зоне субдукции под Северной и Южной Америками, фиксируемые в виде слейбов «холодной» мантии (разрез поперек Сев. Америки, по S-волнам). По Grand, Van der Hilst, Widiyantoro, 1997, GSA Today, v. 7, No. 4, 1-7

Линейные магнитные аномалии в океанах были обнаружены в 50-х годах при геофизическом изучении Тихого океана. Это открытие позволило в 1968 году Хессу и Дицу сформулировать теорию спрединга океанического дна, которая выросла в теорию тектоники плит. Они стали одним из самых веских доказательств правильности теории.

Рисунок - Образование полосовых магнитных аномалий при спрединге.

Причиной происхождения полосовых магнитных аномалий является процесс рождения океанической коры в зонах спрединга срединно-океанических хребтов, излившиеся базальты при остывании ниже точки Кюри в магнитном поле Земли, приобретают остаточную намагниченность. Направление намагниченности совпадает с направлением магнитного поля Земли, однако вследствие периодических инверсий магнитного поля Земли излившиеся базальты образуют полосы с различным направлением намагниченности: прямым (совпадает с современным направлением магнитного поля) и обратным.

Рисунок - Схема образования полосовой структуры магнитоактивного слоя и магнитных аномалий океана (модель Вайна – Мэтьюза).

Вместе с частью верхней мантии состоит из нескольких очень больших блоков, которые называются литосферными плитами. Их толщина различна - от 60 до 100 км. Большинство плит включают в себя как материковую, так и океаническую кору. Выделяют 13 основных плит, из них 7 наиболее крупных: Американская, Африканская, Индо- , Амурская.

Плиты лежат на пластичном слое верхней мантии (астеносфере) и медленно движутся друг относительно друга со скоростью 1-6 см в год. Этот факт был установлен в результате сопоставления снимков, сделанных с искусственных спутников Земли. Они позволяют предположить, что конфигурация в будущем может быть совершенно отличной от современной, так как известно, что Американская литосферная плита движется навстречу Тихоокеанской, а Евразийская сближается с Африканской, Индо-Австралийской, а также с Тихоокеанской. Американская и Африканская литосферные плиты медленно расходятся.

Силы, которые вызывают расхождение литосферных плит, возникают при перемещении вещества мантии. Мощные восходящие потоки этого вещества расталкивают плиты, разрывают земную кору, образуя в ней глубинные разломы. За счет подводных излияний лав по разломам формируются толщи . Застывая, они как бы залечивают раны - трещины. Однако растяжение вновь усиливается, и снова возникают разрывы. Так, постепенно наращиваясь, литосферные плиты расходятся в разные стороны.

Зоны разломов есть на суше, но больше всего их в океанических хребтах на , где земная кора тоньше. Наиболее крупный разлом на суше располагается на востоке . Он протянулся на 4000 км. Ширина этого разлома - 80-120 км. Его окраины усеяны потухшими и действующими .

Вдоль других границ плит наблюдается их столкновение. Оно происходит по-разному. Если плиты, одна из которых имеет океаническую кору, а другая материковую, сближаются, то литосферная плита, покрытая морем, погружается под материковую. При этом возникают , дуги () или горные хребты (). Если сталкиваются две плиты, имеющие материковую кору, то происходит смятие в складки горных пород края этих плит, и образование горных областей. Так возникли, например, на границе Евразийской и Индо-Австралийской плиты . Наличие горных областей во внутренних частях литосферной плиты говорит о том, что когда-то здесь проходила граница двух плит, прочно спаявшихся друг с другом и превратившихся в единую, более крупную литосферную плиту.Таким образом, можно сделать общий вывод: границы литосферных плит - подвижные области, к которым приурочены вулканы, зоны , горные области, срединно-океанические хребты, глубоководные впадины и желоба. Именно на границе литосферных плит образуются , происхождение которых связано с магматизмом.


Более чем полвека тому назад учены уже многое знали о движение литосферных плит земли. В то время уже было достаточно известно, что на глубинном уровне, в тех местах, где происходит формирование океанических хребтов, представляющие собой огромные вулканические пояса, протягивающимися порою на тысячи километров, глубина стремительно растет.

Тектоническая карта Земли

Эти самые места и были провозглашены своеобразным «двигателем», который отвечает за постоянное движение континентов планеты. На основе этой гипотезы и строится вся теория движения и залегание литосферных плит. Она утверждает что литосфера, лежащая на сравнительно вязкой астеносфере, поделена на отдельные плиты. Каждая из этих плит имеет свое название, например: Евразийская плита, Тихоокеанская плита…

Карта литосферных плит

Границы этих плит и являются зонами максимально высокой сейсмической, вулканической и тектонической активности. Так же учены, установили, что, плиты «плывут» вдоль этих границ, по отношению друг к другу. Скорость движения каждой плиты относительно разная, но их средняя предположительная скорость, равна 4-5 сантиметров в год.
Движение плит провоцирует поверхностные землетрясения различной силы, так как движение каждой отдельной плиты, осуществляется относительно границ соседних плит. В некоторых местах плиты также и сталкиваются, формируя новые горные цепи на поверхности. А в остальных случаях, плиты могут наезжать друг на друга, образую глубокие океанические впадины. Если это происходит, то порода, на погружающееся плите, подвергается расплавке и метаморфизму. В некоторых случаях она просто растворяется в мантии или же выбрасывается через трещины вышележащей плиты, в магматическом виде, таким образом, возникают вулканически-активные места в прибрежных районах, которые затем формируют горные цепи.
На сегодняшний день эта теория является наиболее правдивой и дающей научное объяснение многим явлениям, связанным с геологией Земли. Но некто не может сказать с уверенностью, что происходит там, на глубине более 70 километров.

Один комментарий

  1. Комментарий от Кристина - 15.12.2012 #

    Спасибо за помощь.

Пожалуйста, оставьте ваше комментарий. Спасибо!

Похожие статьи:

Слово плита

Слово плита английскими буквами(транслитом) — plita

Слово плита состоит из 5 букв: а и л п т

Значения слова плита. Что такое плита?

Плита (геологическое), участок земной коры в пределах платформы, где складчатое основание относительно погружено и покрыто толщей (1-16 км) горизонтально залегающих или слабонарушенных осадочных пород (см., например, Русская плита).

Плита (a. plate; н. Platte; ф. plague, dalle; и. placa) — участок земной коры в пределах Платформы, где складчатое основание относительно погружено и покрыто толщей горизонтально залегающих или слабо нарушенных осадочных пород (напр., Русская плита).

Геологический словарь.

Литосферная плита

литосфера состоит из блоков — литосферных плит Более 90 % поверхности Земли покрыто 14-ю крупнейшими литосферными плитами: Австралийская плита Антарктическая плита Аравийский субконтинент Африканская плита Евразийская плита Индостанская плита…

ru.wikipedia.org

Литосферная плита — крупная область литосферы.

Литосферные плиты разделены глубинными разломами. Существуют 6 больших плит и более 20 плит меньшего размера. Литосферные плиты подвижны.

ЛИТОСФЕРНАЯ ПЛИТА — крупный (несколько тыс. км в поперечнике) блок земной коры, включающий не только континентальную, но и сопряженную с ней океаническую кору; ограничен со всех сторон сейсмически и тектонически активными зонами разломов.

Большой энциклопедический словарь

Древесно-стружечная плита

Древесно-стружечная плита (ДСтП, неофициально - ДСП) - листовой композиционный материал, изготовленный путем горячего прессования древесных частиц, преимущественно стружки…

ru.wikipedia.org

Древесностружечная плита — листовой материал, изготовленный путем горячего прессования древесных частиц, смешанных со связующим веществом.

В качестве связующего применяют мочевино-формальдегидные, фенол-формальдегидные и другие смолы.

Древесностружечные плиты, изготавливаются горячим прессованием древесных частиц (древесной стружки) со связующим веществом.

В качестве связующего применяют мочевино-формальдегидные, фенол-формальдегидные и др. смолы.

БСЭ. - 1969-1978

Древесноволокнистая плита

Древе́сно-волокни́стые пли́ты или ДВП - материал, получаемый горячим прессованием массы либо сушкой древесно волокнистого ковра (мягкие ДВП), состоящей из целлюлозных волокон, воды, синтетических полимеров и специальных добавок.

ru.wikipedia.org

Древесноволокнистая плита — листовой материал, изготовленный путем горячего прессования или сушки ковра из древесных волокон с введением при необходимости связующих и специальных добавок.

Древесноволокнистые плиты, конструктивный древесный материал, изготовляемый измельчением и расщеплением древесины (или др.

растительного сырья) в волокнистую массу, отливкой из неё плит, их прессованием и сушкой.

БСЭ. - 1969-1978

Цементно-стружечная плита

Цементно-стружечная плита (ЦСП, cement bonded particle board, CBPB) - крупноформатный листовой строительный материал, изготавливаемый из тонкой древесной стружки, портландцемента и химических добавок…

ru.wikipedia.org

Цементно-стружечная плита — конструкционный материал, состоящий из прессованных древесных стружек, смешанных с портландцементом, соответствующими добавками и водой.

Русский язык

Плита́, -ы́, мн.

пли́ты, плит.

Орфографический словарь. - 2004

Морфемно-орфографический словарь. - 2002

Слой древесностружечной плиты

Слой древесностружечной плиты. Слой древесноволокнистой (древесностружечной) плиты Зона древесноволокнистой (древесностружечной) плиты, ограниченная двумя плоскостями, параллельными пласти плиты…

Словарь ГОСТированной лексики

Слой древесностружечной плиты — зона древесностружечной плиты: — ограниченная двумя плоскостями параллельными пласти плиты; и — имеющая однородную и отличную от соседних слоев структуру по плотности, доле связующего…

Столярные плиты

Столярная плита — древесный материал; щит из реек, облицованных/оклеенных с двух сторон лущеным шпоном (лицевым или оборотным слоем).

Для каждого щита (основы столярной плиты) рейки изготовляются из древесины одной породы.

Столярные плиты, древесный материал, представляющий собой щит из реек, облицованных (оклеенных) с двух сторон лущёным шпоном. Щит С. п. называется основой, а шпон - лицевым или оборотным слоем.

БСЭ. - 1969-1978

Тектоника плит

ТЕКТОНИКА ПЛИТ, гипотеза, объясняющая распределения, эволюцию и причины возникновения элементов земной КОРЫ.

По ней кора ЗЕМЛИ и верхняя часть МАНТИИ (ЛИТОСФЕРА) составлена несколькими отдельными ПЛИТАМИ…

Научно-технический энциклопедический словарь

Тектоника литосферных плит текто́ника литосфе́рных плит (новая глобальная тектоника), геодинамическая теория, объясняющая движения, деформации и сейсмическую активность верхней оболочки Земли; современный вариант теории мобилизма.

Географическая энциклопедия

Тектоника плит новая глобальная тектоника (a.

plate tectonics; н.

Тектоника литосферных плит: Определение, движение, типы

Plattentektonik; ф. tectonique globale; и. tectonica en placas), — геодинамич. теория, объясняющая движения, деформации и сейсмич. активность верхней оболочки Земли.

Геологический словарь. — 1978

Примеры употребления слова плита

да и технология меня интересует, ведь плита сама ни к чему не крепится, потом всё нормально будет?

в комнате ламинат и хорошие обои, кухонный гарнитур и плита остаются в подарок, лоджия застеклена.

Но старая плита просто рассыпается, и на нее нельзя ничего класть.

Встроенный кухонный гарнитур, плита и душевая кабина остается.

На дне Атлантического океана найдена большая гранитная плита.

Отделка» под ключ»: э/плита, кафель в ванной, ламинат, обои, межкомнатные двери, большие изолированные комнаты.

Litosferske ploče — самые большие блоки литосферы. Земная кора вместе с частью верхнего слоя состоит из нескольких очень больших блоков, называемых литосферными плитами. Их толщина колеблется — от 60 до 100 км. Большинство пластин включают как континентальную, так и океаническую кору.

Есть 13 основных записей, из которых 7 являются крупнейшими: американскими, африканскими, антарктическими, индо-австралийскими, евразийскими, тихоокеанскими, амурскими.

Пластины лежат на пластиковом слое верхнего слоя (астеносферы) и медленно перемещаются друг с другом со скоростью 1-6 см в год. Этот факт был найден в результате сравнения изображений, взятых с искусственных спутников Земли.

Они показывают, что конфигурация континентов и океанов в будущем может сильно отличаться от настоящего, так как известно, что американские плиты движутся к тихоокеанскому и евразийскому подходам с африканским, индо-австралийским и тихоокеанским регионами.

Американские и африканские литосферные доски медленно различаются.

Силы, вызывающие несоответствие литосферных пластин, возникают при перемещении материала плаща.

Литосферная плита

Мощные нарастающие токи этого вещества подталкивают пластины, рвут земную кору и образуют глубокие дефекты. Из-за подводных лавовых всплесков лавы образуются последовательности магматических пород. Замороженный, кажется, исцеляет раны — трещины. Однако напряжение снова поднимается и снова прерывается. Итак, постепенно строя, литосферные доски они расходятся в разных направлениях.

Области ошибки находятся на суше, но большинство из них находится в океанских гребнях на дне океана, где земная кора тоньше.

Самая большая ошибка на суше — на востоке Африки. Он простирается на 4000 км. Ширина этой кривой составляет 80-120 км. Его периферия усеяна вымершими и активными вулканами.

На других границах панелей наблюдалось столкновение. Это происходит по-разному. Если плиты, из которых океаническая кора и другая являются континентальными, приближаются друг к другу, литосферная плита покрывается морем, погруженным под материк.

В этом случае есть глубокие канавы, острова (японские острова) или горная цепь (Анды). Если две плиты с континентальной корой сталкиваются с краями пластин, которые разрушаются в камнях, вулканизме и образовании горных районов. Так было, например, на границе евразийских и индо-австралийских записей о Гималаях.

Наличие горных районов в интерьере литосферных плит говорит, что, когда граница между двумя пластинами прочно приварена друг к другу и становится один, больше литосферной plitu.Takim так, что вы можете сделать общий вывод: границы литосферных плит — площадь ячейки, которые ограничены вулканов, сейсмических зон, горных районов, среди океанических рифов, глубоководных депрессий и водостоков.

На границе литосферных плит образуются минералы, происхождение которых связано с магматизмом.

Я был бы признателен, если вы разделите статью о социальных сетях:

Litosferna plošča wikipedia
Поиск на этом сайте:

Геологическая структура:

Евразийская плита занимает обширную площадь 67 800 000 кв. Км, третью по величине плиту и содержит большую часть континентальной коры. Он имеет очень сложную геологическую структуру. Его можно разделить на две основные платформы: восточноевропейские и сибирские.

Платформы окружены относительно молодыми сложенными поясами сложной структуры.

Восточно-Сибирская платформа к югу от Алтая ограничивала территорию Саянской области и Охотскую монгольскую зону.

На севере платформы находятся горы Таймыр, отделенные от него корытом Хатанги. На востоке платформа восточнобибского бассейна ограничивается Верхоянским районом, который был создан путем осаждения эпиконтинентальной зоны континента в результате движения североамериканского континента.

Восточно-европейская платформа на западе ограничена так называемой линией Драйзера, зона, над которой расположены Карпаты и другие разрушенные структуры. На юге он ограничен Черным, Каспийским и Кавказским. На востоке это граница Уральской горной платформы, которая отделяет ее от западной Биберской равнины. Эта низменность между двумя платформами и геологически представляет собой блок коры, образовавшийся в результате слияния массы островных арктических микроконтинентов и других терранов, с мезозойским слоем мезозоя, покрывающего аномалии и осадки.

Была создана тектоническая карта панели.

6. Пластина хиндустана

7. Кокосовая плита

Кокосовая плита — это литосферная плита, расположенная в восточной части Тихого океана от полуострова Калифорния до Истмуса Панамы. Земная кора океанического типа. Западная граница плиты — это расширяющийся хребет восточного Тихоокеанского подъема. На востоке пластина движется ниже карибской литосферной плиты.

В подконструкции происходят частые землетрясения.

8. Плато Наска

Пластина Наска — литосферная плита, расположенная в восточной части Тихого океана. Земная кора океанического типа. На восточном краю плиты Наска образовался подводный район, связанный с погружением южноамериканской плиты, погруженной под плиту Наска. Эта же причина привела к образованию сложной области на западе Южной Америки — горах Анд.

Запись была названа в честь того же имени в Перу.

Тихоокеанская плита

Тихоокеанская плита — самая обширная литосфера, почти полностью состоящая из океанической коры. На юге он ограничен различными границами вдоль широко распространенных океанических рифов. На севере, востоке и западе он погружен в зоны субдукции различных видов.

10. Плита Scotia

11. Североамериканская плита

Североамериканская плита — литосферная плита на континенте Северной Америки, северо-западной части Атлантического океана и около половины Северного Ледовитого океана. Границы западной плиты в основном простираются расширенной зоной подрыва, которая поглощается океанической корой пластины Тихега и плитой Хуана де Фука.

Восточная граница плиты проходит вдоль Средиземноморского хребта.

12. Южноамериканская плита

Южноамериканская плита — это литосферная плита, содержащая континент Южной Америки и юго-западной Атлантики. Западная граница панели в основном представлена ​​расширенной областью субдукции, на которой поглощается океаническая кора Тихоокеанской плиты.

Восточная граница плиты проходит вдоль Средиземноморского хребта. На юге, с недостатками, он граничит с плитой Шотландии. На севере у него сложная связь с Карибским морем.

Пластина была создана в результате разделения Гондваны в конце мела.

13. Филипинская пластинка

Также среднего размера:

  • Пластина Хуан де Фука
  • Охотская плита
  • Карибская печь

Потерянные пластины:

  • Пластина Фараллона
  • Башня Тарелки

Отсутствующие океаны:

  • Tethys
  • Panthalassa
  • Палео-Азиатский океан
  • Палео-Уральский океан
  • Pangea Ultima или Amazia — будущий суперконтинент.
  • Пангея
  • Гондвана
  • Rodinia
  • монахиня
  • Cosses

2,4. Рельеф литосферы.

Геоморфология — это наука об облегчении, т.

таким образом, понимая поверхность литосферы или границы раздела литосферы с гидро- и атмосферой.

Современный рельеф — ряд неровностей поверхности земли разных размеров.

Они называются рельефными формами. Рельеф обусловлен взаимодействием внутренних (эндогенных) и внешних (экзогенных) геологических процессов.

Рельефные формы различаются по размеру, структуре, происхождению, истории развития и т. Д. D. Различают выпуклую (положительную) форму рельефа (гребень, высота, Hill et al.) И вогнутую (отрицательную) форму (межгорные котловины, низинные канавы и т. Д.).

Наибольшие формы рельефа — континенты, океанские бассейны и большие формы — горы и равнины были созданы в основном за счет внутренних сил на Земле. Средние и небольшие формы рельефа — долины рек, холмы, овраги, барханы и другие, которые загружаются на более крупные формы, созданные различными внешними силами.

Различные источники энергии лежат в основе геологических процессов. Источником внутренних процессов является тепло, генерируемое радиоактивным распадом и гравитационная дифференциация вещества на Земле.

Источником энергии внешних процессов является солнечная радиация, которая возвращает Землю энергию воды, льда, ветра и т. Д.

Мегарелиф — большие формы рельефа, части планетарных форм: континентальные ледяные щиты, океаны, горные штаты, большие равнины, рифы в океане, океаны и т. П.

Различные внутренние тектонические движения земной коры связаны с внутренними процессами, которые создают основные формы рельефа Земли, магматизма и землетрясений.

Тектонические движения отражаются в медленных вертикальных колебаниях земной коры, в формировании скальных склонов и разломов.

Медленные вертикальные колебательные движения — подъем и падение земной коры — проводятся непрерывно и везде, изменяясь во времени и пространстве на протяжении всей геологической истории. Они специально для платформ. С ними связано морское наступление, а вместе с ним и изменения на континентах и ​​океанах.

Например, сейчас Скандинавский полуостров медленно растет, но южный берег Северного моря спускается. Скорость этих движений достигает нескольких миллиметров в год.

Под уложенными тектоническими дислокациями каменных образований подразумеваются слои слоев, не нарушая их непрерывности. Морщины различаются по размеру, а маленькие часто усложняют большие, по форме, в источнике,

Выровненные и раздираемые деформации земных корок на фоне общего тектонического подъема области ведут к образованию горы. Поэтому сложенные и непрерывные движения сгруппированы под обычным названием orogenic (от греческой горы, рода рода), т.е.

движения, которые создают горы (орогенные).

С горным строительством степень подъема становится все более интенсивной, как процессы разрушения и разрушения материала.

Какие есть литосферные плиты? Где расположены на карте? Какие крупнейшие?

Концепция тектоники литосферных плит

Эта концепция объясняет географию землетрясений, вулканизма, горноскладчатых образований и континентальный дрейф.

Согласно данной концепции ядро земли представляет собой полужидкую магму.

Магма – разогретая до очень высоких температур, частично расплавленная горная порода.

Земная кора перемещается по мантийной поверхности.

Литосферные плиты

Такое перемещение вызывается процессами радиоактивного распада в земном ядре. В результате возникают масштабные, восходящие, подкорковые, конвективные течения.

Литосфера подразделяется на некоторое количество плит. Конвективные течения приводят к движению, расхождению и столкновению этих плит. На границах между данными плитами выделяется сейсмическая энергия, границы чётко выражены.

Наблюдается 3 рода взаимных перемещений плит:

1) Дивергентные границы , вдоль которых происходит раздвижение плит (этот процесс называется спрединг ).

Они формируются в зонах растяжения при движении плит срединноокеанических хребтов и континентальных рифтов.

Рифт – крупная, линейная, тектоническая структура земной коры, образованная при горизонтальном растяжении коры.

2) Конвергентные границы , вдоль которых происходят сближение плит. Они формируются в зонах сжатия. При этом происходит погружение одной плиты под другую, образуются океанические желоба.

Возможны следующие варианты наложения плит:

а) субдукция – океанская плита пододвигается под континентальную, в результате происходит наращивание континентальной плиты или образование островных дуг;

б) обдукция – океанская плита надвигается на континентальную;

в) коллизия — сталкиваются 2 континентальные плиты, одна из плит погружается под другую; в результате образуется сложная коровая структура и горнообразования.

3) Трансформные границы , вдоль этих границ происходит горизонтальное скольжение одной плиты относительно другой

В природе преобладают дивергентные и конвергентные границы.

На дивергентных границах происходит непрерывное рождение новой океанической коры.

Океаническая кора перемещается астеносферным течением в зону субдукции, где поглощается на глубине.

Расходящиеся плиты двигаются в стороны, раскалывая поверхность Земли.

Это приводит к образованию новой земной коры, поэтому такие границы называют конструктивными .

Примеры таких границ – срединноатлантический хребет, где Евразийская плита отделяется от Североамериканской.

Схождение плит ведёт к горообразованию и поглощению земной коры.

Это деструктивные границы.

Пример: плита Наска погружается под Южноамериканскую плиту.

Основные литосферные плиты Земли:

1) Евразийская

2) Африканская

3) Североамериканская

4) Южноамериканская

5) Индоавстралийская

6) Тихоокеанская

8) Филиппинская

9) Аравийская

10) Иранская

11) Карибская

12) Китайская

13) Охотская

15) Хуан – де – Фука

16) Адриатическая

17) Эгейская

18) Турецкая

Зоны коллизии: Индийская плита сталкивается с Евразийской и формируются Гималаи.

Доказательства теории литосферных плит.

1) сходство очертаний континентов;

2) нахождение ледниковых отложений в Бразилии, аналогичных ледниковым отложениям в западной Африке;

3) последовательность залегания геологических пластов в Индии совпадает с последовательностью в Антарктике;

4) окаменелости древних аналогичных рептилий мезозавров встречаются как в Бразилии, так и в юго-западной Африке;

5) изменение направления магнитных частиц на обратное в одновозрастных горных породах с обеих сторон срединноокеанических хребтов;

6) увеличения возраста горных пород по мере удаления от срединноокеанических хребтов.

Основной причиной горизонтального движения плит мы полагаем, конвекцию в мантии, вызываемую её разогревом.

При этом срединноокеанические хребты располагаются над восходящими ветвями течений, глубоководные желоба – над нисходящими.

Образование срединнокеанического хребта:

Вертикальные движения имеют разнообразные причины.

Поднятие — это подъём более лёгких выплавок из астеносферы, разогревом литосферы над восходящими мантийными струями.

Опускание в океанах связано с охлаждением литосферы по мере удаления от осей спрединга и максимальной глубины в зонах глубоководных желобов.

С этими процессами связано образование первичных горных сооружений.

Вторичные горные сооружения формируются под влиянием становления континентальных плит.

Опускание территории связывает с формированием ледникового щита.

Землетрясения — Это подземные толчки и колебания земной поверхности, возникающей в результате внезапных смещений, разрывов в земной коре или верхней части мантии и передающиеся на большее расстояния в виде упругих колебаний.

Сейсмические волны из очага землетрясения: Р – волны, быстрые, способствуют сжатию горных пород, S – волны, медленные, способствуют деформации, сдвигу и кручению пород.

Эти волны распространяются внутри Земли.

На поверхности Земли распространяются волны от эпицентра землетрясения (волны Лява и Релея).

Интенсивность проявления землетрясений на поверхности проявляются в балах, зависит от глубины очага и магнитуды землетрясения (мера энергии) (1,2,3,4 – порядки).

Шкала магнитуд именуется шкалой Рихтера.

В России применяется 12ти бальная шкала МSК-64.

Область наибольших разрушений располагается вокруг эпицентра (проекции очага на земную поверхность).

Магматизм – процесс выплавления магмы, её развития перемещения, взаимодействия с твердыми горными породами и застывание.

Магма – расплавленная масса, образующаяся в глубинных зонах Земли.

При излиянии магмы на поверхность Земли, формируются магматические горные породы.

В оболочках земли периодически образуются отдельные очаги магмы, они различаются по составу и глубине.

Причина магматизма: глубинная активность Земли, связанная с развитием тепловой истории и тектонической эволюцией.

По глубине проявления магматизм делят на:

1) абиссальный (глубинный);

2) гипабиссальный (на небольшой глубине);

3) поверхностный (вулканизм).

В результате формируются интрузивные тела и горные породы (в процессе внедрения в толщу земной коры расплавленной магмы) и эффузивные (в процессе излияния жидкой лавы из глубин на поверхность Земли с образованием лавовых покровов и потоков).

Вулканизм – совокупность явлений, обусловленных проникновением магмы из глубин на поверхность.

Вулканический материал, который изливается на поверхность – вулканическое стекло, пепел, газы и т.д.