Как из неустойчивой системы сделать устойчивую. Устойчивость систем автоматического управления (сау)

Устойчивостью называют свойство системы самостоятельно возвращаться в состояние равновесия после того, как внешнее входное воздействия вывело ее из состояния равновесия. Равновесием называют состояние системы, когда управляемая величина y (t ) постоянна, и все ее производные равны нулю. Исследование устойчивости является одной из основных задач в теории автоматического управления.

Как уже отмечалось, процесс управления определяется переходным процессом: законом изменения y (t ) после изменения x (t ). Переходной процесс САУ можно получить решением дифференциального уравнения САУ (1). Это решение может быть представлено суммой двух составляющих, вынужденной у в (t ) и переходной y п (t ):

y (t ) = у в (t ) + y п (t ),

где y в (t ) определяется свойствами системы и видом входного воздействия. САУ будет устойчивой, если с течением времени переходная составляющая будет стремиться к нулю:

Однозначно судить об устойчивости системы можно по виду ее переходного процесса: затухающий переходной процесс (сходящийся к некоторой постоянной) соответствует устойчивой системе, расходящийся (стремящийся в бесконечность) – неустойчивой.

ПРИМЕРЫ переходных процессов неустойчивых САУ.

При исследовании устойчивости САУ решают следующие задачи:

Определение, является ли САУ устойчивой при заданных параметрах;

Определение допустимых изменений параметров САУ без нарушения устойчивости;

Поиск параметров и/или структуры САУ, при которых она может стать устойчивой.

Теорема Ляпунова

Необходимое и достаточное условие устойчивости линейных САУ формулируется в теореме Ляпунова :

Если характеристическое уравнение САУ имеет все корни с отрицательной действительной частью, то система устойчива;

Если хотя бы один корень имеет положительную действительную часть, то САУ неустойчива.

Характеристическое уравнение САУ записывается по виду дифференциального уравнения или передаточной функции системы. Так, из уравнения (1) после преобразования Лапласа мы имеем (см. вывод (2)):

Полином в левой части равенства вида:

называется характеристическим . Приравнивание нулю характеристического полинома дает характеристическое уравнение системы или звена:

Корни характеристического уравнения, количество которых соответствует порядку характеристического уравнения САУ, могут быть действительными, комплексными и чисто мнимыми. Их можно представить в виде точек на комплексной плоскости величины р . Согласно теореме, для устойчивости системы необходимо и достаточно, чтобы все корни лежали в левой полуплоскости. Примеродного из возможных распределений в комплексной плоскости корней характеристического уравнения устойчивой САУ 5-ого порядка показан на рис. 75.

В случае, если среди корней характеристического уравнения имеется нулевой корень или пара сопряженных чисто мнимых корней, расположенных на мнимой оси, система оказывается на границе устойчивости. Примерывозможных распределений в комплексной плоскости корней характеристического уравнения САУ 5-ого порядка, находящейся на границе устойчивости , приведены на рис. 77.

Системы, у которых имеется одна пара мнимых корней, могут совершать незатухающие колебания (автоколебания). Такие системы практически неработоспособны .

Рис. 77

Рассмотрим примеры оценки устойчивости по теореме Ляпунова и связь результатов оценки с переходной характеристикой САУ.

Пусть САУ 3-го порядка имеет характеристическое уравнение вида:

На рис. 78 показан результат решения этого уравнения, полученный с использованием математического пакета Mathcad. Множество корней уравнения представлено в круглых скобках. Как видно, один из корней уравнения оказался отрицательным действительным числом –3,55, а два других – комплексными сопряженными числами с отрицательной действительной частью –0,525: (–0,525 – 0,657j ) и (–0,525 + 0,657j ).

Аналогично рассмотрим другую САУ 3-го порядка, с характеристическим уравнением вида:

На рис. 80 показан результат решения этого уравнения, полученный с использованием математического пакета Mathcad. Множество корней уравнения представлено в круглых скобках. Как видно, один из корней уравнения оказался отрицательным действительным числом –7,2, а два других – комплексными сопряженными числами с положительной действительной частью 1,31: (1,31 + 4,64j ) и (1,31 – 4,64j ), т.е. распределение корней в комплексной плоскости свидетельствует по теореме Ляпунова о неустойчивости САУ.

Критерии устойчивости САУ

Для оценки устойчивости необходимо оценить расположение корней характеристического уравнения системы относительно координатных осей комплексной плоскости. Эту оценку можно осуществить непосредственным решением характеристического уравнения. Но для определения устойчивости не обязательно знать значения корней характеристического уравнения, достаточно проверить, являются ли действительные части всех корней отрицательными.

Правила, позволяющие исследовать устойчивость системы без непосредственного нахождения корней характеристического уравнения, называются критериями устойчивости .

На ранней стадии развития теории управления актуальной была задача определения устойчивости полинома без вычисления его корней, т.к. характеристические уравнения высоких порядков трудно было решать «в ручную». Сейчас легко найти корни характеристического полинома с помощью компьютерных программ, однако такой подход не позволяет исследовать устойчивость теоретически, например, определять границы областей устойчивости отдельных параметров САУ.

С помощью критериев устойчивости не только устанавливается факт устойчивости систем, но и оценивается влияние тех или иных параметров и структурных изменений в системе на устойчивость. Математически все формы критериев устойчивости эквивалентны, т.к. они определяют условия, при которых корни характеристического уравнения попадают в левую полуплоскость комплексной системы координат .

6.2.1. Критерий Гурвица

Критерий Гурвица относится к алгебраическим критериям устойчивости, которые позволяют установить устойчива ли САУ или нет по результатам алгебраических действий над коэффициентами характеристического уравнения.

Бóльшая часть реальных САУ являются замкнутыми, т.е. имеют общую единичную обратную связь и, соответственно, передаточную функцию вида:

,

где W раз (р ) – передаточная функция разомкнутой САУ (без учета общей обратной связи).

Рассмотрим вывод характеристического уравнения замкнутой САУ, если дана передаточная функция соответствующей ей разомкнутой САУ. Согласно (17) характеристическое уравнение САУ получается приравниванием к нулю знаменателя ее передаточной функции, следовательно, для замкнутой системы запишем:

Однако, передаточная функция разомкнутой системы, согласно (2), имеет вид:

следовательно, характеристическое уравнение замкнутой системы может быть записано как:

Дробь равна нулю когда ее числитель равен нулю, следовательно, характеристическое уравнение замкнутой системы можно записать как сумму полиномов числителя и знаменателя передаточной функции разомкнутой системы, прировняв полученное выражение к нулю:

(18)

Важно! Для применения критерия Гурвица используется специальная форма записи характеристического уравнения, отличающаяся от (16) обратной нумерацией коэффициентов полинома:

Критерий Гурвица использует матрицу коэффициентов характеристического уравнения размером n ´n , составленную следующим образом:

По главной диагонали выписываются все коэффициенты характеристического уравнения, начиная с a 1 и заканчивая a n ;

Каждая строка дополняется коэффициентами с возрастающими индексами слева на право так, чтобы чередовались строки с четными и нечетными индексами;

В случае отсутствия коэффициента, а также, если индекс меньше 0 или больше n , на его месте пишется 0.

В результате получается матрица, первая строка которой содержит коэффициенты уравнения (19) a 1 , a 3 , a 5 ,… (все с нечетными номерами) и нулями на месте отсутствующих элементов, вторая строка – коэффициенты a 0 , a 2 , a 4 ,… (все с четными номерами) и нулями на месте отсутствующих элементов. Третья строка получается сдвигом первой строки на одну позицию вправо, четвертая – сдвигом второй строки на одну позицию вправо и т.д. Например, для САУ 5-го порядка (n = 5) эта матрица имеет вид:

Критерий Гурвица определяет необходимое и достаточное условие устойчивости САУ следующим образом: все корни характеристического уравнения САУ имеют отрицательные действительные части, если при a 0 > 0 все n определителей Гурвица матрицы коэффициентов положительны .

Определители Гурвица вычисляются следующим образом:

При условии положительности всех коэффициентов характеристического уравнения достаточно проверить только n – 1первых определителей Гурвица, не вычисляя определитель для полной матрицы. При этом условии частные случаи критерия Гурвица для систем низких порядков получают, раскрывая определители матрицы коэффициентов. Так, в результате раскрытия определителей, для САУ первого и второго порядков необходимым и достаточным условием устойчивости является собственно положительность всех коэффициентов характеристического уравнения. Для САУ 3-го порядка – положительность всех коэффициентов и условие вида:

Определим с помощью критерия Гурвица, при каких значениях коэффициента статического преобразования регулятора k рассматриваемая система будет устойчивой. Запишем передаточную функцию разомкнутой САУ:

С использованием (18) запишем характеристическое уравнение замкнутой САУ:

Для того уравнения, согласно форме (19), коэффициенты, соответственно равны:

При положительности всех коэффициентов этого уравнения 3-го порядка необходимым условием устойчивости также является выполнение условия (20):

a 1 ×a 2 – a 0 ×a 3 > 0,

Т.о., рассматриваемая САУ будет устойчива, если значение коэффициента статического преобразования k удовлетворяет условию :

Рассмотрим примеры оценки устойчивости по критерию Гурвица исследованных ранее по теореме Ляпунова систем 3-го порядка (см. рис. 78 и рис. 80). Матрица коэффициентов Гурвица для САУ 3-го порядка имеет общий вид:

,

т.е. матрицы Гурвица для рассматриваемых САУ равны, соответственно:

и
.

Характеристические уравнения обеих САУ удовлетворяют критерию положительности всех коэффициентов, поэтому для оценки устойчивости по критерию Гурвица достаточно вычислить и проверить на положительность n – 1первых определителей Гурвица, т.е. для 3-го порядка – второй определитель. Результаты вычисления вторых определителей матрицы Гурвица для рассматриваемых систем (см. рис. 78 и рис. 80), полученные с использованием Mathcad, показаны на рис. 83–а и рис. 83–б соответственно. Как видно, результаты оценки устойчивости по Гурвицу совпадают с ранее полученными оценками по Ляпунову и результатами построения переходных характеристик рассматриваемых САУ (см. рис. 79 и рис. 81 соответственно) – положительный определитель соответствует устойчивой САУ, а отрицательный – неустойчивой.

Годограф по формуле (21) рассчитывают, изменяя частоту w от 0 до +¥, и строят в комплексной плоскости.

Критерий Михайлова определяет необходимое и достаточное условие устойчивости САУ следующим образом: САУ является устойчивой, если при изменении частоты от 0 до + ¥ годограф вектора Михайлова А(j w) начинается на положительной части действительной оси и, не обращаясь в ноль, поворачиваясь против часовой стрелки, проходит последовательно n квадрантов комплексной плоскости, где n – порядок характеристического полинома САУ.

У устойчивых систем годограф Михайлова имеет плавную спиралевидную форму и при w = 0 отсекает на действительной оси в положительном направлении отрезок, равный свободному члену характеристического уравнения а 0 .

По виду годографа Михайлова можно определить и граничное состояние устойчивости САУ: в случае границы устойчивости первого типа, т.е. наличия у характеристического уравнения САУ нулевого корня (см. рис. 77) отсутствует свободный член характеристического уравнения а 0 = 0 и годограф начинается из начала координат. При границе устойчивости второго типа, т.е. наличия у характеристического уравнения САУ пары чисто мнимых корней (см. рис. 77), годограф проходит через начало координат (обращается в ноль) при некотором ненулевом значении w, причем это значение и есть частота незатухающих колебаний системы .

Рассмотрим примеры оценки устойчивости по критерию Михайлова исследованных ранее по теореме Ляпунова систем 3-го порядка (см. рис. 78 и рис. 80). Формулы для расчета годографов Михайлова этих систем имеют вид, соответственно:

Годограф Михайлова для первой САУ показан на рис. 84. Как видно, его форма удовлетворяет всем условиям критерия:

Годограф начинается на положительной части действительной оси (отсекая при w = 0 на действительной оси отрезок, равный свободному члену характеристического уравнения а 0 = 3);

Не обращается в ноль;

С ростом значения частоты w, поворачиваясь против часовой стрелки, проходит последовательно первый, второй квадрант и в третьем квадранте, при w ® ¥, уходит в бесконечность.

Следует отметить, что для систем с высоким порядком характеристического уравнения (n = 5 и более) отсчет квадрантов при проверке условий критерия Михайлова после четвертого продолжается против часовой стрелки в том же порядке. Т.е., например, у устойчивой САУ 5-го порядка годограф должен последовательно проходить четыре квадранта, возвращаться в первый (для годографа – по порядку пятый) и в нем уходить в бесконечность. Пример годографа Михайлова для устойчивой САУ 5-го порядка с формулой для расчета годографа вида:

показан на рис. 86. Для удобства анализа начальный участок годографа, полученные при малых значениях частоты w, показан отдельным фрагментом. Видно, что годограф при w = 0 начинается на положительной части действительной оси и, последовательно, против часовой стрелки, проходя пять квадрантов, в пятом уходит в бесконечность.

Критерий Найквиста для амплитудно–фазовой характеристики (АФХ) формулируется следующим образом: замкнутая система будет устойчивой, если АФХ соответствующей разомкнутой системы при изменении частоты от 0 до не охватывает точку с координатами [–1, j0].

Рассмотрим произвольную разомкнутую САУ, не содержащую интегрирующих звеньев. В этом случае значение АФХ для частоты w = 0 равно коэффициенту статического преобразования САУ:

W (j w) = W (j 0) = k .

При этом, если степень числителя передаточной функции меньше степени знаменателя, то график АФХ, начинаясь в точке с координатами (k , j 0) при изменения частоты от 0 до ¥ стремится к началу координат. На рис. 88–а показана АФХ устойчивой САУ – график не охватывает точку с координатами [–1, j 0], а на рис. 88–б неустойчивой (график точку охватывает).

Если в составе САУ есть интегрирующие звенья, то АФХ при w = 0 обращается в бесконечность, т.е. график АФХ в этом случае начинается не на действительной оси, а приходит из бесконечности. В этом случае для оценки устойчивости по критерию Найквиста в контур включают не только кривую графика АФХ, но и часть окружности бесконечного радиуса, проводимой от действительной оси по часовой стрелке. Пример устойчивой САУ с АФХ такого вида показан на рис. 90–а , неустойчивой – на рис. 90–б .

Рис. 90
а)
б)

Рассмотрим пример оценки устойчивости по критерию Найквиста для АФХ на примере замкнутой САУ, которой соответствует разомкнутая система с передаточной функцией вида:

Запишем по заданной W раз (p ) формулу расчета АФХ:

и, изменяя частоту w от 0 до +¥, построим график АФХ разомкнутой САУ с использованием математического пакета Mathcad (рис. 91). Для удобства анализа участок АФХ в области точки [–1, j 0], полученный для больших значений частоты w, показан на рис. 91 отдельным фрагментом. По фрагменту хорошо видно, что график охватывает точку [–1, j 0], следовательно замкнутая САУ является неустойчивой .

Рис. 91

6.2.4. Критерий Найквиста для ЛАЧХ и ЛФЧХ

Критерий Найквиста для логарифмической амплитудно-частотной и фазочастотной характеристик формулируется следующим образом: замкнутая система устойчива, если для характеристик соответствующей ей разомкнутой системы выполняются два условия:

- при частоте равной частоте среза САУ w с модуль фазочастотной характеристики меньше 180 градусов: < 180°;

- при частоте равной w p значение ЛАЧХ меньше нуля: L (w p) < 0.

Как следует из формулировки критерия, для проверки его условий по характеристикам разомкнутой САУ первоначально необходимо определить две частоты: частоту среза w с и частоту w p . После этого для найденных значений частот следует проверить выполнимость обоих условий критерия.

Частотой среза САУ называется частота, при которой ЛАЧХ системы пересекает ось частот, то есть L (w с ) = 0. Эта частота также называется частотой единичного усиления САУ, так как сигнал этой частоты на выходе САУ имеет ту же амплитуду, что и на входе: А вых = А вх . Для этого случая справедливо:

Важно! Не путайте понятия частоты среза отдельных типовых звеньев САУ и всей системы в целом. Определение частот среза типовых звеньев рассмотрено в графе «Примечания» Приложения 1.

Частотой w p САУ называется частота, при которой ФЧХ САУ равняется 180° со знаком «плюс» или со знаком «минус». Если ФЧХ несколько раз пересекает ординату ±180, то выполнение условия проверяется для крайней правой точки.

Важно! Рассматриваемые характеристики – частоты среза w с и частота w p – имеются не у всякой САУ. Если ЛАЧХ системы вообще не пересекает ось частот, то есть L (w) ¹ 0 ни при каких значениях w, то у такой системы нет частоты среза. Аналогично, если ФЧХ системы ни при каких значениях частоты не принимает значение ±180°, то данная САУ не характеризуется параметром w p . В этих случаях для оценки устойчивости следует выбрать другие критерии.

На рис. 92–а показано, как по графикам ЛАЧХ и ЛФЧХ разомкнутой САУ определить частоты w с и w p .

Рис. 92
а)
б)
ПРИМЕРЫ: 1) ЛАЧХ САУ без частоты среза w с; 2) ЛФЧХ САУ без частоты w p .

Проверим выполнимость условий критерия Найквиста для характеристик разомкнутой САУ, показанных на рис. 92–а . Определим графически величины L (w p) и j(w с ) как показано на рис. 92–б. Как видно, L (w p) < 0, а < 180°, т.е. оба условия критерия Найквиста выполняются, следовательно, замкнутая САУ, соответствующая рассматриваемой разомкнутой, является устойчивой . Из рис. 92–б также можно сделать вывод о том, что для устойчивости САУ по критерию Найквиста достаточно, чтобы выполнялось условие w с < w p .

Для характеристик разомкнутой САУ на рис. 93–а L (w p) > 0, а > 180°, т.е. оба условия критерия Найквиста не выполняются, следовательно, замкнутая САУ, соответствующая рассматриваемой разомкнутой, является неустойчивой . Из рис. 93–а также можно сделать вывод о том, что для неустойчивости САУ по критерию Найквиста достаточно, чтобы выполнялось условие w с > w p .

Рис. 93
а)
б)

Для характеристик разомкнутой САУ, которой соответствует замкнутая система, находящаяся на границе устойчивости , L (w p) = 0 и = 180°, w с = w p (см. рис. 93–б ). У такой системы для сигнала с частотой w с , т.е. с частотой единичного усиления, фазовый сдвиг выходного сигнала относительно входного составляет –180°. Это говорит о том, что после прохождения САУ величина сигнала меняет знак, сохраняя абсолютную величину (энергию), то есть устанавливаются незатухающие колебания. АФХ такой САУ показана на рис. 89 .

Рассмотрим пример оценки устойчивости по критерию Найквиста для ЛАЧХ и ЛФЧХ на примере замкнутой САУ, которой соответствует разомкнутая система с передаточной функцией вида:

Графики ЛАЧХ и ЛФЧХ разомкнутой САУ, построенные с использованием математического пакета Mathcad по формулам (11) и (12), приведены на рис. 94. Как видно по рисунку, ЛАЧХ равна нулю при w с » 13,5 с -1 . ЛФЧХ на частоте w p » 5,7 с -1 меняет знак – после того, как j(w) достигает значения –180° (радиус-вектор, поворачиваясь по часовой стрелки, переходит в верхнюю полуплоскость) отсчет фазового сдвига продолжается в области положительных значений. При этом из двух условий критерия Найквиста формально нарушается только второе: значение ЛАЧХ на частоте среза не является отрицательным (L (w p) » 18 > 0). Первое условие ( < 180°) формально выполняется: » 130° < 180°. Однако следует понимать, что опережение по фазе в 130° соответствует, при отсчете по часовой стрелке без смены знака, отставанию на величину:

j(w с ) = –360° + 130° = –230°,

следовательно, замкнутая САУ неустойчива. К такому же выводу можно придти, сравнив величины w с и w p: w с > w p . Оценка устойчивости этой САУ по критерию Найквиста для АФХ, выполненная в конце раздела 6.2.3, также показала отсутствие устойчивости.

Выполним проверку оценки устойчивости по критериям Найквиста с использованием теоремы Ляпунова. По заданной запишем с использованием формулы (18) характеристическое уравнение замкнутой САУ:

Решение характеристического уравнения замкнутой САУ, полученное с использованием математического пакета Mathcad, имеет вид:

Множество корней уравнения представлено в круглых скобках. Как видно, один из корней уравнения оказался отрицательным действительным числом –17,74, а два других – комплексными сопряженными числами с положительной действительной частью 3,657. Эти корни равны, соответственно, (3,657+ 12,22j ) и (3,657– 12,22j ). Т.о. по теореме Ляпунова замкнутая САУ неустойчива , что согласуется с результатами оценки устойчивости, полученными с применением обоих критериев Найквиста.

Рис. 94

Запасы устойчивости САУ

Технические характеристики устройств, входящих в состав САУ, меняются в процессе эксплуатации, и, следовательно, со временем изменяются и постоянные передаточной функции САУ. Следователь, недостаточно спроектировать просто устойчивую систему, нужно, чтобы она сохраняла устойчивость при некоторых изменениях параметров САУ в сравнении с расчетными, т.е. обладала запасами устойчивости . Запас определяет удаление системы от границы устойчивости.

Запасом устойчивости по амплитуде DL называется величина в децибелах, на которую нужно сместить вверх ЛАЧХ разомкнутой САУ так, чтобы привести соответствующую ей устойчивую замкнутую систему к границе устойчивости. На рис. 95 показано смещение вверх ЛАЧХ устойчивой САУ, исходные характеристики которой были рассмотрены в примере оценки устойчивости по критерию Найквиста (см. рис. 92–б ).

где А(w p) < 1 – модуль АФХ на частоте w p .

Зная DL , можно определить величину коэффициента статического преобразования разомкнутой САУ, при которой соответствующая ей замкнутая система окажется на границе устойчивости:

;

, (23)

где k

Рассмотрим пример определения граничного значения коэффициента статического преобразования для разомкнутой САУ с передаточной функцией вида:

ЛАЧХ и ЛФЧХ этой САУ показаны на рис. 96. По графикам характеристик видно, что частота среза САУ составляет w с » 50 с -1 , а ЛФЧХ достигает значения –180° на частоте w p » 100 с -1 и после этого меняет знак. Запас устойчивости по амплитуде для этой САУ равен
, следовательно, по формуле (23):

.

При изменении коэффициента статического преобразования САУ до значения, равного k гр , ЛФЧХ САУ не изменится, а ЛАЧХ сместится вверх (см. рис. 96). Как видно, при найденном значении k гр = 425,975 частота среза разомкнутой САУ w с 1 становиться равной 100 с -1 , т.е. w с 1 = w p . А значит, в соответствии с критерием Найквиста для ЛАЧХ и ЛФЧХ, соответствующая рассматриваемой разомкнутой САУ замкнутая система действительно окажется на границе устойчивости.

На рис. 97 показано смещение вниз ЛФЧХ разомкнутой САУ, исходные характеристики которой были рассмотрены в примере оценки устойчивости по критерию Найквиста (см. рис. 92–б ). Как видно, смещение исходной ЛФЧХ параллельно самой себе вниз на величину Dj(w с ) приводит к смещению частоты w p разомкнутой САУ влево : для новой ЛФЧХ, показанной пунктиром, значение этой частоты w p1 = w с , что, по критерию Найквиста для ЛАЧХ и ЛФЧХ, свидетельствует о нахождении замкнутой системы на границе устойчивости. Из рис. 97 следует, что величину Dj(w с ) можно определить как:

Напомним, что w с это частота единичного усиления: сигнал с такой частотой на выходе САУ имеет ту же величину амплитуды, что и на входе. Следовательно, длина радиус-вектора, проведенного в точку АФХ, которая соответствует w с , равна 1. Эту точку можно найти на графике АФХ по пересечению с окружностью единичного радиуса (см. рис. 98).

Из рис. 98 хорошо видно, что если график АФХ разомкнутой САУ повернуть на величину угла, равную Dj(w с ), то график будет проходить через точку [–1, j 0], что приведет замкнутую систему к границе устойчивости по критерию Найквиста для АФХ.

Для той же АФХ рассмотрим определение запаса устойчивости по амплитуде. Частоте w p соответствует фазовый сдвиг ±180°, следовательно, точку АФХ, соответствующую этой частоте, можно найти по пересечению графика с действительной осью (рис. 99). Модуль АФХ, определяющий коэффициент ослабления амплитуды сигнала с такой частотой на выходе САУ, равен длине радиус-вектора, проведенного из начала координат в соответствующую точку АФХ. Для АФХ на рис. 99 эта величина равна А(w p), и по ней с использованием формулы (22) можно рассчитать DL .

где k – коэффициент статического преобразования исходной разомкнутой САУ .

Рассмотрим пример определения граничного значения коэффициента статического преобразования по АФХ разомкнутой САУ, для которой ранее расчет k гр был выполнен по логарифмическим характеристикам (см. начиная с формулы (23) и до рис. 96). АФХ этой САУ с исходным значением k = 107 показана на рис. 100. Для удобства анализа графика в области точки [–1, j 0] его фрагмент показан отдельно. Как видно, у САУ с исходным значением k модуль АФХ А(w p) » 0,25, следовательно, по формуле (25):

Найденное значение k гр = 428 с удовлетворительной точностью совпадает с результатом расчета по ЛАЧХ (k гр = 425,975). Погрешности в расчетах обусловлены приближенным определением по графикам DL и А(w p).

Рис. 100

Как видно из рис. 100, при изменении коэффициента статического преобразования САУ до значения, равного k гр = 428, АФХ САУ пройдет через точку с координатами [–1, j 0], а значит, в соответствии с критерием Найквиста для АФХ, соответствующая рассматриваемой разомкнутой САУ замкнутая система действительно окажется на границе устойчивости.

Запасы устойчивости САУ по амплитуде DL и фазе Dj(w с ), наряду с показателями, определяемыми по переходной характеристике (см. раздел 2.3.2.), являются основными показателями качества управления.


Литература

1. Анхимюк, В.Л. Теория автоматического управления. / В.Л. Анхимюк, О.Ф. Опейко, Н.Н. Михеев; под ред. В.Л. Анхимюк. – Мн.: Дизайн ПРО, 2000. – 352 с.

2. Бесекерский, В.А. Теория систем автоматического регулирования / В.А. Бесекерский, В.П. Попов. – М.: Наука, 1975. – 766с.

3. Андрющенко, В.А. Теория систем автоматического управления / В.А. Андрющенко. – Л.: ЛГУ, 1990. – 256 с.

4. Клюев, А.С. Проектирование систем автоматизации технологических процессов: справочное пособие / А.С. Клюев, Б.В. Глазов и др. – М.: Энергоатомиздат, 1990. – 464 с.

5. Клюев, А.С. Техника чтения схем автоматического управления и технологического контроля / А.С. Клюев, Б.В. Глазов и др. – М.: Энергоатомиздат, 1991. – 432 с.

6. Федоров, Ю.Н. Справочник инженера по АСУ ТП: проектирование и разработка: учеб.-практ. пособие / Ю.Н. Федоров. – М.: Инфра-Инженерия, 2008. – 928 с.

7. Поляков, К.Ю. Теория автоматического управления для «чайников». К.Ю. Поляков // Преподавание, наука и жизнь [Электронный ресурс]. – 2009. – Режим доступа: http://kpolyakov.narod.ru/uni/teapot.htm. – Дата доступа: 01.06.2011.

8. Тихонов, А.И. Теория автоматического управления: курс лекций / А.И. Тихонов. – Иваново: ИГЭУ, 2002. – 188 с.

9. Яковлев, А.В. Система стабилизации частоты вращения электродвигателя: лабораторная работа по курсу «Технические средства САУ» /А.В. Яковлев. – М.: МГТУ им. Н.Э. Баумана, 2007. – 24 с.

10. Зайцев, Г.Ф. Теория автоматического управления и регулирования / Г.Ф. Зайцев. – К.: Выща шк., 1989. – 431 с.

11. Туманов, М.П. Теория управления. Теория линейных систем автоматического управления: учебное пособие / М.П. Туманов. – М.: МГИЭМ, 2005. – 82 с.

12. Кузьменко, Н.В. Конспект лекций по дисциплине «Автоматизация технологических процессов и производств»: учеб. пособие / Н.В. Кузьменко. – Ангарск: АГТА, 2005. – 77 с.

13. Беспалов, А.В. Динамический звенья. Временные характеристики. Учеб. пособие / А.В. Беспалов, Н.И. Харитонов и др. – М.: РХТУ им. Д.И. Менделеева, 2001. – 80 с.

14. Савин, М.М. Теория автоматического управления: учеб. пособие / М.М. Савин, В.С. Елсуков, О.Н. Пятина. – Ростов на Дону: Феникс, 2007. – 469 с.

15. Филлипс, Ч. Системы управления с обратной связью / Ч. Филлипс, Р. Харбор. – М.: Лаборатория Базовых Знаний, 2001. – 616 с.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http :// www . allbest . ru /

УСТОЙЧИВОСТЬ СИ СТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

1. Основные понятия теории устойчивости

1.1 Исследование устойчивости по уравнениям первого приближения

1.2 Алгебраические критерии устойчивости

1.3 Частотные критерии устойчивости

2. Выделение областей устойчивости

Библиографический список
1. Основ ные понятия теории устойчивости
В процессе функционирования система подвергается различного рода возмущающим воздействиям, которые вызывают отклонения ее от положения равновесия или заданного движения.
Система автоматического управления называется устойчивой, если после прекращения действия возмущений, вызвавших ее отклонение от п о ложения равновесия, она возвращается в это положение равновесия или з а данного движения.
Следовательно, только устойчивая система является работоспосо б ной.
Пусть САУ описывается системой нелинейных стационарных дифференциальных уравнений вида
где yk - переменные состояния системы;
Yk - известные функции, определенные в некоторой фиксированной области G пространства переменных yk при любом t >0.

B этом пространстве уравнения (3.1) определяют компоненты Yk вектора скорости движения некоторой точки М , называемой изображающей точкой . С физической точки зрения уравнения (3.1) следует рассматривать как математическую форму записи тех физических законов, которым подчиняется система автоматического управления. Область G определения функций Yk является той частью пространства состояний, на которую распространяется действие указанных физических законов.

Пусть величины y 10,...., yn 0 обозначают начальные значения переменных состояния. Каждой системе начальных значений соответствует единственное решение
уравнений, определенное для любых Допустим, что среди всех движений нас интересует то, которое описывается заданными функциями времени
В частном случае, когда система стационарна и функции Yk явно не зависят от времени, тогда движения (3.3) являются установившимися. Им отвечают так называемые очевидные решения
служащие корнями уравнений
В дальнейшем будем говорить об устойчивости движения системы, имеющей решение (3.3), рассматривая ее установившееся движение как частный случай. Введем в рассмотрение отклонения от заданного движения
Подставив выражения для yk , полученные из в исходную систему уравнений, получим
,
где
Уравнения записаны относительно отклонений, появившихся в результате каких-либо возмущений и, по терминологии Ляпунова, называются уравн е ниями возмущенного движения .
Формула определяет преобразование переноса начала координат в точку с координатами и поэтому, если решение системы (3.1) сходится к значениям, то решение системы сходится к нулю. Уравнения
называются уравнениями невозмущенного движения.
При t = t 0 переменные х k принимают свои начальные значения xk 0 ,которые называются возмущениями. Каждой заданной системе таких возмущений соответствует единственное решение
Эти решения представляют собой возмущенное движение системы.
Изучим поведение разностей при t > t 0 . Рассмотрим для этого уравнение
которое определяет в n -мерном пространстве квадрат расстояния изображающей точки М от начала координат. Возмущенное движение при t>t0 может протекать следующим образом:
изображающая точка М все более удаляется от начала координат, а величина R неограниченно возрастает (кривая 1 на рис.3.1);
изображающая точка М остается внутри некоторой окрестности начала координат, так что величина R все время имеет ограниченное значение, не превосходящее наперед заданное малое положительное число , т.е. R < (кривая 2 на рис.3.1);
изображающая точка М с течением времени возвращается в начало координат, т.е. (кривая 3 на рис.3.1).
Рис. 3.1. Виды движения изображающей точки

Равновесное состояние xk =0 можно считать устойчивым, если система, получив начальное возмущение, в дальнейшем продолжает оставаться в бл и жайшей окрестности равновесного состояния или возвращается в него. Следует дать конкретное толкование понятию “ближайшая окрестность” и основоположник теории устойчивости А.М. Ляпунов дал следующее определение устойчивости.

Невозмущенное движение называется устойчивым по отношению к величинам xk , если при всяком произвольно заданном положительном чи с ле , как бы мало оно ни было, найдется другое такое положительное число ( ) , при котором для возмущений xk 0 , удовлетворяющих услов и ям
возмущенное движение будет удовлетворять неравенствам
при любом t > t 0. Неравенства ограничивают область допустимых начальных отклонений.
Если при сколь угодно малом >0 невозможно найти ( ) , при котором удовлетворяются неравенства (3.11), то система неустойчива.
Если система устойчива и ее движение таково, что , то эта си с тема асимптотически устойчива.
Отсюда следует, что на рис. 3.1 кривая 1 соответствует неустойчивой системе, кривая 2 - устойчивой системе, а кривая 3-асимптотически устойчивой системе.

А.М. Ляпунов разработал различные методы оценки устойчивости САУ. Прямой, или так называемый второй метод Ляпунова, применим для исследования всех классов систем и основан на использовании специальных функций Ляпунова. Мы уже говорили, что значительное число систем допускают линеаризацию по методу малого отклонения и Ляпунов впервые доказал допустимость суждения об устойчивости в малом, т.е. при малых отклонениях, исходной нелинейной системы по уравнениям первого приближения, полученным в результате линеаризации.

1 . 1 Исследование устойчивости по уравнениям первого приближения
Любое линейное дифференциальное уравнение имеет решение вида
,
где i - корни характеристического уравнения, x т( t ) - частное решение, определяющее требуемое движение системы. Отклонение от заданного движения запишется в виде

Отсюда следует, что если все корни характеристического уравнения отрицательны (имеют отрицательную вещественную часть), то и линейная система асимптотически устойчива. Если среди корней характеристического уравнения имеется хотя бы один, имеющий положительную вещественную часть, то и линейная система неустойчива. Можно ли по корням характеристического уравнения линеаризованной системы оценить устойчивость исходной нелинейной системы при малых отклонениях? А.М. Ляпунов доказал следующие теоремы об устойчивости в малом.

Теорема 1. Если вещественные части k всех корней k j k характеристического уравнения первого приближения отрицательны, то невозмущенное движение исходной нелинейной системы асимптотически устойчиво независимо от не учитываемых членов разложения в ряд Тейлора выше первого порядка малости.
Теорема 2. Если среди корней характеристического уравнения первого приближения найдется хотя бы один с положительной вещественной частью, то невозмущенное движение исходной нелинейной системы неустойчиво независимо от не учитываемых членов разложения в ряд Тейлора выше первого порядка малости.
Критические случаи, когда нельзя судить об устойчивости по уравнениям первого приближения, возникают, если среди всех корней имеется группа корней, вещественная часть которых равна нулю, а остальные имеют отрицательные вещественные части.
Рассмотрим рисунок.

Корни характеристического уравнения, имеющие отрицательные вещественные части расположены в левой полуплоскости и называются устойчивыми корнями (полюсами) системы. Корни с положительными вещественными частями расположены в правой полуплоскости и являются неустойчивыми полюсами системы. С этой точки зрения мнимая ось является границей устойчивости и штрихуется слева.

Представляет интерес часто встречающийся случай, когда характеристический полином системы имеет один нулевой корень, а остальные корни лежат в левой полуплоскости. Это соответствует уравнению системы, в котором равен нулю свободный член an .
Вынеся за скобки оператор s , получим
Так как оператор Лапласа при нулевых начальных условиях является символом дифференцирования, то можно сделать вывод, что последнее уравнение записано относительно скорости регулируемой величины. Характеристическое уравнение
по условию имеет только устойчивые корни и, следовательно, система устойчива относительно скорости регулируемой величины. По отношению к самой регулируемой величине система нейтральна и ее значение после окончания процесса регулирования произвольно и зависит от начальных условий. Такие системы называются нейтрально устойчивыми.

Оценка устойчивости непосредственно по корням характеристического уравнения возможна, но малопригодна в инженерной и научной практике, так как знание численных значений корней не несет информации о путях стабилизации системы, если она неустойчива или имеет малые запасы устойчивости. Поэтому для целей анализа устойчивости разработаны специальные критерии, позволяющие исследовать вопросы устойчивости без определения корней характеристического уравнения.

1.2 Алгеб раические критерии устойчивости
Необходимое условие устойчивости.
Характеристическое уравнение системы после определения его корней может быть представлено в виде
Если система устойчива и все ее корни имеют отрицательные вещественные части, то после раскрытия скобок в последнем выражении получим характеристическое уравнение системы
,
в котором все коэффициенты а i , i =1,2,... n , будут строго больше нуля.
Для устойчивости системы необходимо, но недостаточно, чтобы все коэффициенты ее характеристического уравнения были строго больше н у ля.
Понятие недостаточности означает, что если какой-либо коэффициент характеристического уравнения системы меньше нуля или равен нулю, то система неустойчива, но положительность всех коэффициентов еще не означает, что система устойчива. Нужны дополнительные исследования.
Критерий устойчивости Гурвица.
Для оценки устойчивости по этому критерию необходимо из коэффициентов характеристического уравнения составить определитель Гурвица по следующим правилам:
по главной диагонали выписываются все коэффициенты характеристического уравнения от а1 до а n в порядке возрастания индексов;
столбцы определителя заполняются коэффициентами от главной диагонали вниз по убывающим, а вверх- по возрастающим индексам;
места коэффициентов, индексы которых больше n или меньше нуля заполняются нулями.
Для примера составим определитель Гурвица, для системы 5-го порядка. Характеристическое уравнение системы имеет вид
где все коэффициенты строго больше нуля. Получим
.
Для того, чтобы все корни характеристического уравнения имели отрицательные вещественные части и система была устойчивой необход и мо и достаточно, чтобы все коэффициенты и все диагональные определит е ли определителя Гурвица были строго больше нуля.
Для устойчивости системы 5-го порядка необходимо выполнение условий
а k >0, k =0,1,2,...5;
2 =а1а2 - а0а3>0;
3=а3 2 - а12а4>0;
4 =а4 3 -а2а5 2 + а0а5(а1а4 - а0а5)>0;
5 =а5 4>0.

Так как при выполнении необходимого условия устойчивости всегда а n >0, то об устойчивости системы можно судить по определителям до n -1 включительно. Доказано, что если n -1=0, то система находится на колебательной границе устойчивости, т.е. имеет пару чисто мнимых корней. Из условия n -1=0 можно определить критические значения параметров системы, при которых она выходит на границу устойчивости.

Пример. Исследовать устойчивость системы стабилизации угла тангажа самолета и определить критическое значение передаточного числа автопилота по углу тангажа. Система задана структурной схемой.
На схеме обозначено:
k - передаточное число (коэффициент передачи) автопилота по углу тангажа;
передаточная функция рулевого привода;
передаточная функция самолета по угловой скорости тангажа z ;
k z - передаточное число автопилота по угловой скорости тангажа.
Для передаточной функции разомкнутой системы можно записать
где
Передаточная функция замкнутой системы примет вид
где
Составим определитель Гурвица
Оценим устойчивость системы для следующих значений параметров:
.
При этих значениях для коэффициентов характеристического уравнения получим
Следовательно, все коэффициенты характеристического уравнения замкнутой системы положительны и
Условия устойчивости выполнены и система при избранных параметрах устойчива.
Определим критическое значение передаточного числа по углу тангажа, для чего приравняем третий диагональный определитель нулю и сделаем преобразования.
В последнем выражении только d 3 и d 4 являются функциями коэффициента k и подставив их в него, получим квадратное уравнение относительно этого коэффициента
Решив это уравнение, получим критическое значение передаточного числа по углу тангажа
Система устойчива, если k <16.56.
Критерий устойчивости Рауса.
Критерий Рауса требует несколько меньшего объема вычислений, чем критерий Гурвица и более удобен для программирования на ЭВМ. Для суждения об устойчивости системы по этому критерию необходимо составить таблицу Рауса.
Таблица Рауса
Элементы каждой строки для i >2 вычисляются по формуле
Для того, чтобы корни характеристического уравнения лежали в л е вой полуплоскости и система была устойчива, необходимо и достаточно, чтобы все элементы первого столбца таблицы Рауса были строго полож и тельны.
1.3 Частотные критерии устойчивости
Принцип аргумента.
Частотные критерии устойчивости используются в графоаналитическом виде и отличаются большой наглядностью при проведении расчетов. В основе всех частотных методов лежит принцип аргумента.
Рассмотрим характеристическое уравнение системы
Если i , i =1,2,... n - корни этого уравнения, то
Каждому корню на комплексной плоскости соответствует определенная точка, и геометрически на этой плоскости каждый корень можно изобразить в виде вектора с модулем i , проведенного из начала координат (рис.3.4). Сделаем замену s = j и получим
В соответствием с правилом вычитания векторов получим, что конец каждого элементарного вектора ( j - i ) находиться на мнимой оси.
Аргумент вектора D ( j ) равен сумме аргументов элементарных векторов

Направление вращения вектора ( j - i ) против часовой стрелки при изменении частоты от - до + принято считать положительным, а по часовой стрелке- отрицательным. Предположим, что характеристическое уравнение имеет m корней в правой полуплоскости и n - m корней в левой полуплоскости. При изменении частоты от - до + каждый вектор ( j - i ), начало которого лежит в левой полуплоскости повернется на угол + , а каждый вектор, начало которого лежит в правой полуплоскости - на угол - . Изменение аргумента вектора D ( j ) при этом будет

Это выражение и определяет принцип аргумента.
Изменение аргумента вектора D ( j ) при изменении частоты от - до + равно разности между числом ( n - m ) корней уравнения D ( s )=0 , лежащих в левой полуплоскости, и числом m корней этого уравнения, лежащих в правой пол у плоскости, умноженной на .
Критерий устойчивости Михайлова.
Из (3.14) следует, что если все корни характеристического уравнения лежат в левой полуплоскости, т.е. m =0 , то
Отсюда следует первая формулировка критерия Михайлова.
Система автоматического управления устойчива, если при возрастании частоты от - до + изменение аргумента вектора D ( j ) будет равно n , где n - порядок характеристического уравнения.
Вектор D ( j ) можно представить в виде
Вещественная составляющая этого выражения является четной функцией, а мнимая - нечетной функцией частоты, т.е. U (- )= U ( ); V (- )= - V ( ) и D (- j )= U ( ) - jV ( ).
Отсюда следует, что кривая Михайлова симметрична относительно вещественной оси и при ее построении можно ограничиться диапазоном частот от 0 до + . Изменение аргумента вектора D ( j ) при этом уменьшится в два раза и формулировка критерия Михайлова будет следующей.

Система автоматического управления устойчива, если при возрастании частоты от 0 до + вектор D ( j ) повернется на угол n /2 или, что то же самое, если кривая Михайлова при том же изменении частоты, начиная с полож и тельной вещественной полуоси, обходит последовательно в положительном н а правлении n квадрантов и заканчивается в n -ом квадранте (рис.3.5).

Если хотя бы один квадрант пропущен (рис.3.6), то система неусто й чива.
Наблюдая за поведением кривой Михайлова для устойчивой САУ, можно заметить, что при ее прохождении через n квадрантов корни уравнений U ( )=0 и V ( )=0 чередуются между собой, т.е. между двумя корнями уравнения V ( )=0 лежит один корень уравнения U ( )=0.
Система автоматического управления устойчива, если корни уравнений V ( )=0 и U ( )=0 вещественные и перемежаются между собой.
Система может находиться на границе устойчивости и этому соответствуют два случая:
характеристическое уравнение системы имеет один нулевой корень, что будет при а n = 0 ; кривая Михайлова при этом выходит из начала координат;
2)характеристическое уравнение имеет пару чисто мнимых корней j k и D ( j k )= U ( k )+ jV ( k )=0, что может быть только если одновременно U ( k )=0 и V ( k )=0; это означает, что кривая Михайлова проходит через начало координат.
Рис. 3.5. Кривые Михайлова для Рис. 3.6. Кривая Михайлова для устойчивых САУ неустойчивой САУ
Используя критерий Михайлова, можно определить критические значения параметров системы, при которых она находиться на границе устойчивости, в частности критический коэффициент усиления. Для этого нужно решить систему уравнений
Пример. Используя критерий Михайлова, оценить устойчивость системы стабилизации угла тангажа самолета и определить критическое значение передаточного числа k .
Характеристическое уравнение замкнутой системы было получено выше и имеет вид
Сделаем замену s = j и выделим вещественную и мнимую части
Построенная при заданных ранее параметрах системы кривая Михайлова имеет вид, показанный на рис.3.7.
Кривая начинается на вещественной положительной полуоси, проходит последовательно 4 квадранта и заканчивается в 4-м квадранте. Следовательно, при данных параметрах исследуемая система устойчива.
Рис. 3.7. Кривая Михайлова для системы стабилизации угла тангажа
Для определения критического значения передаточного числа по углу тангажа составим систему уравнений
Из второго уравнения системы определяем частоту и подставив выражение для нее в первое уравнение, после преобразований получим квадратное уравнение относительно искомого значения передаточного числа
Полученное уравнение абсолютно идентично полученному при решении задачи по критерию Гурвица и результат таким же
Построение кривой Михайлова для систем высокого порядка может быть связано с громоздкими вычислениями и графическими построениями. В этих случаях может быть более просто оценить устойчивость по корням уравнений U ( )=0 и V ( )=0. Определим корни этих уравнений и расположим их на числовой оси корни уравнения U ()=0
Критерий устойчивости Найквиста.
Критерий устойчивости Найквиста позволяет судить об устойчивости замкн у той системы по виду АФЧХ разомкнутой системы.
Пусть передаточные функции разомкнутой и замкнутой системы имеют вид:
где D ( s )- характеристический полином замкнутой системы. Перейдя к частотным представлениям, получим
Вектор N ( j ) называется вектором Найквиста. Очевидно, что числитель и знаменатель этого вектора имеют один и тот же порядок n . При использовании критерия Найквиста следует различать два случая.
1). Разомкнутая система устойчива и ее характеристическое уравнение A ( s )=0 имеет все корни в левой полуплоскости. Тогда при изменении частоты от 0 до
Изменение аргумента вектора D ( j ) в общем случае равно
где m - число корней уравнения D ( s )=0, лежащих в правой полуплоскости. устойчивость частотный замкнутый неизменность
Изменение аргумента вектора Найквиста будет
Если замкнутая система устойчива, то m =0 и

Так как при , W ( j ) 0, то N ( j ) 1. Рассмотрим рисунок 3.8а, на котором показана кривая Найквиста, которую описывает вектор Найквиста при изменении частоты от 0 до. Нетрудно убедиться, что вектор Найквиста опишет угол, равный нулю только в случае, если его годограф не охватывает начало координат. Перенесем начало координат в точку с координатами (1, j 0) (рис.3.9б). Можно убедиться, что изменение аргумента вектора Найквиста будет равно нулю если АФЧХ W ( j ) разомкнутой системы не охватывает критическую точку с координатами (-1, j 0).

Рис. 3.9. К определению критерия Найквиста
Критерий Найквиста для рассматриваемого случая формулируется следующим образом.
Система автоматического управления, устойчивая в разомкнутом состоянии, будет устойчивой и в замкнутом состоянии, если АФЧХ W ( j ) разомкнутой системы при изменении частоты от 0 до не охзватывает критическую точку с координатами (-1, j 0).
Особенности возникают, если разомкнутая система нейтрально-устойчива, т.е.

где полином A 1( s ) имеет все корни в левой полуплоскости. При =0 АФЧХ разомкнутой системы W ( j )= и проследить поведение кривой АФЧХ в окрестности этой точки невозможно. При изменении частоты от - до + наблюдается движение корней вдоль мнимой оси снизу вверх и при =0 происходит бесконечный разрыв. При этом движении обойдем нулевой корень (рис.3.10) по полуокружности бесконечно малого радиуса так, чтобы этот корень остался слева, т.е. искусственно отнесем его к левой полуплоскости.

Рис. 3.10. Годограф Найквиста для нейтрально- устойчивой САУ
При движении по этой полуокружности в положительном направлении независимая переменная изменяется по закону
где фаза ( ) изменяется от - / 2 до + / 2. Подставив это выражение в передаточную функцию вместо множителя s в знаменателе, получим
где R при 0 , а фаза ( ) изменяется от + / 2 до - / 2. Следовательно, в окрестности нулевого корня годограф W ( j ) представляет собой часть окружности бесконечно большого радиуса, движение по которой происходит при увеличении частоты в отрицательном направлении.

Для оценки устойчивости замкнутой системы, если разомкнутая система нейтрально устойчива, необходимо АФЧХ W ( j ) разомкнутой си с темы дополнить дугой бесконечно большого радиуса, начиная с меньших частот, в отрицательном направлении и для полученной замкнутой кривой воспользоваться критерием Найквиста для систем, устойчивых в разом к нутом состоянии.

2).Разомкнутая система неустойчива. В этом случае
где р- число корней характеристического уравнения разомкнутой системы, лежащих в правой полуплоскости. Если замкнутая система устойчива, т.е. m =0 , то
т.е. АФЧХ разомкнутой системы охватывает критическую точку (-1,j0) в положительном направлении ровно p / 2 раз.
Система, неустойчивая в разомкнутом состоянии, будет устойчивой в замкнутом состоянии, если АФЧХ W ( j с ) разомкнутой системы при и з менении частоты от 0 до охватывает критическую точку (-1, j 0) в полож и тельном направлении ровно р/2 раз, где р- число правых полюсов разомкнутой си с темы.
Определение числа охватов критической точки- непростая задача, особенно в случае систем высокого порядка. Поэтому в практических приложениях нашла применение другая формулировка критерия Найквиста для рассматриваемого случая.
Переход годографа W ( j ) через отрезок вещественной полуоси (- ,-1), т.е. левее критической точки при увеличении частоты сверху вниз считается положительным, а снизу вверх- отрицательным.
Система, неустойчивая в разомкнутом состоянии, будет устойчивой в замкнутом состоянии, если разность между числом положительных и о т рицательных переходов АФЧХ разомкнутой системы равна р/2.
где число положительных переходов, число отрицательных переходов.
Например, передаточная функция ракеты-носителя “Авангард” имеет два неустойчивых полюса и ее АФЧХ показана на рис. 3.11.
Рис. 3.11. АФЧХ ракеты “Авангард”
Очевидно, что для данной ракеты, как объекта управления,
а и Замкнутая система будет устойчивой.
Запасы устойчивости.

Устойчивость замкнутой САУ зависит от расположения годографа АФЧХ разомкнутой системы относительно критической точки. Чем ближе эта кривая проходит от критической точки, тем ближе замкнутая САУ к границе устойчивости. Для устойчивых систем удаление АФЧХ разомкнутой системы от критической точки принято оценивать запасами устойчивости по фазе и по модулю.

Допустим, что АФЧХ некоторой разомкнутой системы имеет вид, показанный на рис. 3.12.
Рис. 3.12. АФЧХ разомкнутой системы
Угол , образуемый прямой, проходящей через точку пересечения АФЧХ с окружностью единичного радиуса, что соответствует частоте среза системы, и отрицательной вещественной полуосью называется запасом усто й чивости системы по фазе.
(3.24)
Запасом устойчивост и по модулю называется величина
(3.25)
где А( )- значение АФЧХ при частоте = , при которой она пересекает вещественную ось.
Для всех систем должны выполняться требования:

Так как АФЧХ графически строится в определенном масштабе, то для вычисления запаса устойчивости по модулю можно просто измерить длины отрезков, соответствующих единице и ОВ, и разделить результат первого измерения на второй. Если увеличивать коэффициент усиления системы, то точка В будет смещаться влево и при ОВ=-1 коэффициент усиления примет критическое значение. Поэтому запас устойчивости по модулю можно определить и по формуле

Пример. Используя критерий Найквиста оценить устойчивость замкнутой системы стабилизации угла тангажа и определить ее запасы устойчивости.

Передаточная функция разомкнутой системы была получена ранее и имеет вид

Численные значения коэффициентов заданы или вычислены ранее. Сделаем замену s = j :

После преобразований получим

Изменяя частоту от 0 до построим кривую АФЧХ - рис. 3.13. Проведя дугу окружности единичного радиуса, определим, что запас устойчивост по фазе =1100 . Для рассматриваемого примера получим, что h =3.3.

Рис. 3.13. АФЧХ системы стабилизации угла тангажа

Полученные запасы устойчивости удовлетворяют выше указанным требованиям.

Оценка устойчивости по ЛЧХ

АФЧХ разомкнутой системы подразделяются на два типа:

АФЧХ первого рода, все точки, пересечения которых с вещественной осью расположены справа от критической точки (кривая 1, рис. 3.14);

АФЧХ второго рода, точки, пересечения которых с вещественной осью расположены как справа, так и слева от критической точки (кривая 2, рис. 3.14).

В системах первого рода увеличение коэффициента усиления ведет к сдвигу ветви кривой влево и приближению ее к критической точке. Запасы устойчивости при этом уменьшаются и при k = k кр система попадает на границу устойчивости. Уменьшение коэффициента усиления стабилизирует систему. В системах 2-го рода переход системы на границу устойчивости может происходить как при увеличении коэффициента усиления, так и при его уменьшении. Из критерия Найквиста следует, что замкнутая система, имеющая в разомкнутом состоянии АФЧХ 1-го рода устойчива, если всем точкам АФЧХ, вплоть до точки пересечения ее с окружностью единичного радиуса ( = с) , соответствуют значения фазы ( ) , большие, чем - , т.е. должно выполняться неравенство с< . Этому определению легко дать интерпретацию на языке ЛЧХ.

Для того чтобы система, устойчивая в разомкнутом состоянии и имеющая АФЧХ первого рода, была устойчивой и в замкнутом состоянии, необходимо и достаточно, чтобы при всех частотах, при которых ЛАХ п о ложительна, значения фазовой характеристики были больше, чем - , т.е. с< .

По ЛЧХ легко определяются и запасы устойчивости, причем запас устойчивости по усилению в логарифмическом масштабе должен удовлетворять условию Н >6дб , что соответствует значениям h >2.

Для того, чтобы САУ неустойчивая в разомкнутом состоянии и имеющая АФЧХ 2-го рода, была устойчивой в замкнутом состоянии, нео б ходимо и достаточно, чтобы разность между числом положительных и о т рицательных переходов фазовой характеристикой через линию - была равна р/2, где р - число корней характеристического уравнения разомкнутой системы, лежащих в правой полуплоскости, при всех частотах когда L ( )>0.

Необходимо подчеркнуть, что показанные способы оценки устойчивости по ЛЧХ и определения запасов устойчивости справедливы при таком расположении оси ординат относительно фазовой характеристики, когда с началом координат совмещена точка ( )=-1800.

По ЛЧХ можно определить и критический коэффициент усиления. Для этого необходимо сместить ЛАХ вдоль линий сопряжения параллельно самой себе так, чтобы выполнить условие с = и вычислить коэффициент усиления для вновь полученной ЛАХ.

Определение критического коэффициента усиления для статической и астатической систем иллюстрируется рис. 3.17 а и 3.17б.

Пример. Построить ЛЧХ системы стабилизации угла тангажа и оценить ее устойчивость. Определить запасы устойчивости и рассчитать критическое значение передаточного числа по углу тангажа.

Передаточную функцию разомкнутой системы можно привести к виду

Корни характеристического уравнения разомкнутой системы имеют значения:

Следовательно, После преобразований получим

Определим частоты сопряжения и разобьем сетку координат.

Построим ЛАХ системы, учитывая, что коэффициент усиления разомкнутой системы равен Так как относительный показатель затухания мал, то необходимо полученную ЛАХ уточнить в окрестности частоты сопряжения 03. Это можно сделать как по специальным графикам, так и расчетным путем по известной амплитудной частотной характеристике. АЧХ данной системы определяется выражением

Подставив несколько значений частоты в окрестности частоты сопряжения 03, получим значения АЧХ, рассчитаем значения ЛЧХ и построим уточняющую кривую. Фазовая частотная характеристика строится как сумма фазовых характеристик типовых звеньев, входящих в состав передаточной функции

где

Из графиков ЛЧХ следует, что с< и, следовательно, замкнутая система устойчива. Запас устойчивости по фазе =1080 . Для систем, в которые входят колебательные звенья с малым относительным коэффициентом затухания, запас устойчивости по модулю определяется в точке резонанса и в данном случае он равен 10дб, что соответствует значению h=3.16. Полученные значения запасов устойчивости незначительно отличаются от значений рассчитанных в соответствии с критериями Гурвица и Михайлова. В исследуемом случае критический коэффициент усиления определяется при касании L (р) оси частот. Перенесем ЛАХ параллельно самой себе так, чтобы в точке = р она касалась оси частот и продлим первую асимптоту до пересечения с осью частот. В этой точке k = =7.244, что соответствует значению (k )кр=16.74.

2. Выделение областей устойчивости

Среди физических параметров, характеризующих САУ, всегда имеется несколько, легко поддающихся изменению и использующихся для определенной настройки системы. При конструировании системы весьма важно знать диапазоны значений изменяемых параметров, допустимые с точки зрения сохранения устойчивости САУ. Об этих диапазонах можно судить, если в пространстве изменяемых параметров построить область устойчивости, т.е. выделить область значений параметров, при которых система сохраняет устойчивость.

Область устойчивости в теории автоматического управления принято называть D - областью, а представление области параметров в виде областей устойчивости и неустойчивости называют D - разбиением.

Построение области устойчивости по алгебраическим критериям

Допустим, что коэффициенты характеристического уравнения

зависят от двух изменяемых параметров и . Для построения области устойчивости прежде всего нужно, в соответствии с необходимым условием устойчивости, выделить область изменяемых параметров при нахождении в которой, коэффициенты характеристического уравнения положительны. Это можно сделать, решив систему уравнений

Для построения границы положительности коэффициентов а i необходимо из решений уравнений (3.26) выбрать те, которые обеспечивают положительность всех коэффициентов. Из всех границ положительности только две одновременно могут быть и границами устойчивости. Такими являются границы, уравнениями которых являются

Доказано, что если d 0 и dn приблизятся к нулю, то характеристическое уравнение будет иметь два действительных корня

При дальнейшем уменьшении коэффициенты d 0 и dn перейдут через ноль, станут отрицательными, а корни (3.28) окажутся положительными. Так как вещественные корни определяют апериодические составляющие решения дифференциального уравнения, то границы (3.27) называют апериодическими границами устойчивости. На самих границах устойчивости корни (3.28) равны соответственно и 0. Стороны кривых, di ( , )=0, примыкающие к области положительности соответствующих коэффициентов, штрихуются в сторону положительности. Может случиться так, что какой либо из коэффициентов, d 0 или dn не зависит от изменяемых параметров. Это означает отсутствие соответствующей апериодической границы устойчивости.

Колебательной границей устойчивости называется кривая в плоскости изменяемых параметров, при переходе через которую пара комплексно - сопряженных корней изменяет знак своей вещественной части на обратный. Доказано, что колебательная граница устойчивости определяется выражением

(3.29)

В этом выражении n-1 - (n-1) - й определитель Гурвица. Колебательная граница устойчивости штрихуется в сторону положительности n-1.

Пример. Построить область устойчивости в плоскости параметров k и k z системы стабилизации угла тангажа.

Характеристическое уравнение замкнутой системы имеет вид

Исследуем неравенства d 2>0, d 3>0, d 4>0 . Из первого неравенства следует, что для положительности коэффициента d 2 необходимо, чтобы выполнялось условие

Неравенство d 4>0 определяет, что для положительности этого коэффициента необходимо, чтобы k >0 . Для выполнения неравенства d 3>0 требуется, чтобы

При любых значениях передаточного числа по углу больших нуля, правая часть последнего выражения по модулю будет больше единицы. Таким образом, границами положительности коэффициентов будут

От изменяемых параметров зависит коэффициент dn = d 4 и не зависит коэффициент d 0. Поэтому уравнение k =0 одновременно является и апериодической границей устойчивости.

Составив определитель Гурвица, для его n-1 минора получим

Подставим в это выражение значения коэффициентов d 2, d 3, d 4, как функций параметров k и k , после преобразований получим квадратное уравнение, определяющее передаточное число по угловой скорости как функцию от передаточного числа по углу тангажа

По этому выражению строится колебательная граница устойчивости. График деления области исследуемых параметров на области устойчивости и неустойчивости показан на рис. 3.19.

Граница колебательной неустойчивости штрихуется в сторону положительности n-1- го определителя Гурвица, а прямая k z =0 в сторону положительности этого коэффициента. Для проверки полученных результатов выберем какие - либо значения параметров внутри заштрихованной области, например k =5, k z =0.6, вычислим значения коэффициентов характеристического уравнения и оценим устойчивость замкнутой системы по критерию Гурвица. Получим, что при выбранных значениях передаточных чисел система устойчива. Это означает, что и вся область, внутрь которой обращены штрихи, является областью устойчивости.

D - разбиение в плоскости одного параметра

Пусть нас интересует влияние какого - либо одного параметра на устойчивость САУ и этот параметр входит в характеристическое уравнение линейно, так что это уравнение можно представить в виде

Сделав замену s = j , получим

Задавая значения частоты от - до +, можно построить кривую ( ) , отображающую мнимую ось плоскости корней на плоскость . Эта граница D - разбиения симметрична относительно вещественной оси. Поэтому вычисления можно вести в диапазоне частот от 0 до +, а затем дополнить полученную кривую ее зеркальным отображением на диапазон частот от - до нуля. При движении по мнимой оси от - до + на плоскости корней область устойчивости остается слева.

Поэтому при движении по кривой D - разбиения в сторону увеличения частоты ее штрихуют слева. Область, внутрь которой обращены штрихи, является предполагаемой областью устойчивости. Для окончательного решения, необходимо взять какое - либо вещественное значение параметра в исследуемой области и воспользоваться каким - либо критерием устойчивости. Если при избранном значении параметра система устойчива, то рассматриваемая область является областью устойчивости.

Пример. Построить область устойчивости системы стабилизации угла тангажа в плоскости передаточного числа k .

Характеристическое уравнение исследуемой системы можно записать в виде

В полученных выражения сделаем замену s = j и получим

В этих выражениях

Так как необходимым условием устойчивости рассматриваемой системы является k >0, то мнимая ось также является границей устойчивости и штрихуется в сторону положительности k . Значение этого коэффициента, равное 5, находится внутри заштрихованной области и мы знаем, что при этом значении система устойчива. Значит и весь отрезок вещественной оси, расположенный внутри заштрихованной области, дает значения передаточного числа по углу, при которых система устойчива. Можно показать, что окончание этого отрезка находиться в точке, равной критическому значению коэффициента k =16.56.

D - разбиение в плоскости двух параметров

Пусть коэффициенты характеристического уравнения линейно зависят от двух параметров и так, что его можно записать в виде

После замены s = j получим

Так как равенство нулю всего преобразованного характеристического уравнения может выполняться только, если одновременно равны нулю его вещественная и мнимая части, то получим систему уравнений относительно изменяемых параметров

Разрешив систему (3.33) относительно и , получим

Задавая значения частоты от - до +, определим совокупность точек на плоскости - , образующих кривую D - разбиения. Функции ( ) и ( ) являются четными, и поэтому, при изменении частоты в указанных выше пределах, кривая D - разбиения пробегается дважды. При построении кривой D - разбиения в плоскости двух параметров необходимо руководствоваться следующими правилами :

1) если в системе (3.33) первое уравнение получено из вещественных частей, а второе - из мнимых частей функций P ( j ), Q ( j ) и S ( j ) и если параметр по написанию стоит первым, а - вторым, то система координат должна быть правой, т.е. ось является осью абсцисс с отсчетом положительных значений вправо, а ось - осью ординат с отсчетом положительных значений вверх;

2)двигаясь по кривой D - разбиения при изменении частоты в сторону увеличения, ее штрихуют слева, если ( )>0, и справа, если ( )<0 ; в результате кривая штрихуется дважды с одной стороны, так как на концах кривой при =0 и = знак главного определителя ( ) изменяется.

Может быть случай, когда при = * 0, одновременно ( *)= = ( *)= ( *)=0. Тогда система (3.33) становится линейно - зависимой и ее уравнения отличаются друг от друга только на постоянный множитель. В этом случае эта система сводится к одному уравнению, определяющему на плоскости - прямую линию, которая называется особой прямой. Если особая прямая пересекает кривую D - разбиения в точке = * и в этой точке определитель ( ) меняет знак, то эта прямая также является границей устойчивости и в указанной точке изменяется направление штриховки кривой и особой прямой. Если при = * изменение знака главного определителя не происходит, то штриховка на особую прямую не наносится. Если свободный член характеристического уравнения dn = dn ( , ) , то это соответствует существованию особой прямой для =0 и ее уравнение будет

...

Подобные документы

    Оценка устойчивости системы автоматического регулирования по критериям устойчивости Найквиста, Михайлова, Гурвица (Рауса-Гурвица). Составление матрицы главного определителя для определения устойчивости системы. Листинг программы и анализ результатов.

    лабораторная работа , добавлен 06.06.2016

    Частотные показатели качества системы автоматического управления в переходном режиме. Полный анализ устойчивости и качества управления для разомкнутой и замкнутой систем с помощью критериев Гурвица и Найквиста, программных продуктов Matlab, MatCad.

    курсовая работа , добавлен 18.06.2011

    Устойчивость как свойство системы возвращаться в исходное состояние после вывода ее из состояния равновесия. Характер решения при различных значениях корней уравнения. Критерий устойчивости Рауса-Гурвица, Найквиста, Михайлова, определение его областей.

    реферат , добавлен 15.08.2009

    Рассмотрение основ передаточной функции замкнутой системы. Анализ устойчивости системы автоматического управления. Описание нахождения характеристического уравнения системы в замкнутом состоянии. Алгебраические критерии устойчивости Гурвица и Михайлова.

    контрольная работа , добавлен 28.04.2014

    Системы автоматического регулирования (САР), их виды и элементарные звенья. Алгебраические и графические критерии устойчивости систем. Частотные характеристики динамических звеньев и САР. Оценка качества регулирования, коррекция автоматических систем.

    курсовая работа , добавлен 16.02.2013

    Передаточная функция разомкнутой системы. Анализ устойчивости системы автоматического управления. Амплитудно-фазовая частотная характеристика системы. Критерий устойчивости Гурвица. Анализ переходного процесса при подаче ступенчатого воздействия.

    курсовая работа , добавлен 18.10.2012

    Алгебраические и частотные критерии устойчивости. Порядок характеристического комплекса. Годографы частотной передаточной функции разомкнутой системы. Определение устойчивости с помощью ЛАЧХ разомкнутой системы. Абсолютно и условно устойчивые системы.

    реферат , добавлен 21.01.2009

    Анализ исходной системы автоматического управления, определение передаточной функции и коэффициентов. Анализ устойчивости исходной системы с помощью критериев Рауса, Найквиста. Синтез корректирующих устройств и анализ синтезированных систем управления.

    курсовая работа , добавлен 19.04.2011

    Поиск передаточных функций разомкнутой и замкнутой систем, замкнутой системы по ошибке и возмущению. Точность отработки входных воздействий. Устойчивость по критерию Гурвица. Выбор регулятора и уточнение его параметров. Значения динамических показателей.

    контрольная работа , добавлен 04.03.2014

    Проведение анализа замкнутой системы на устойчивость. Определение передаточной функции разомкнутой системы и амплитудно-фазовой частотной характеристики системы автоматического управления. Применение для анализа критериев Гурвица, Михайлова и Найквиста.

Система автоматического управления имеет инерционности различной физической природы, которые замедляют процессы. Единичный скачок, который обычно рассматривается в качестве тестового сигнала САУ (рисунок 1), может быть разложен в ряд:

Рисунок 1. Типовая структура САУ

Наличие инерционностей обуславливает сдвиг по фазе сигнала обратной связи
относительно входного, причем фазовый сдвиг зависит как от номера гармоники, так и от постоянных времени. Так для апериодического звена 1-го порядка фазовый сдвиг определяется:

. (2)

Рисунок 2. Фазовый сдвиг на выходе САУ

Поскольку на входе САУ действует бесконечный спектр гармонических составляющих, то среди них найдется такая гармоника, фазовый сдвиг которой равен
(рисунок 2), т.е. выходной сигнал будет в противофазе с входным.

Так как обратная связь отрицательная, то на входе системы он действует в фазе с входным (пунктир на рисунке 2), причем сигнал обратной связи действует в тот момент, когда
.

Пусть амплитуда гармонической составляющей, фазовый сдвиг которой
, равна 0.5, а коэффициент передачи системы по этой гармонике больше единице, например равен 2. Тогда на выходе сигнал после первого периода
, после второго периода
, после третьего
и т.д., т.е. процесс расходящийся (неустойчив) (рисунок 3).

Рисунок 3. Переходный процесс для гармоники
при k >1.

Если коэффициент передачи системы для гармоники, фазовый сдвиг которой
, меньше единицы, то процесс будет затухать (система устойчива).

Таким образом, замкнутая система будет устойчивой, если коэффициент передачи её для гармонической составляющей, фазовый сдвиг, которой равен
, меньше единицы.

Если коэффициент передачи для указанной гармоники равен единице, то система находится на границе устойчивости и выходная координата изменяется по гармоническому закону с постоянной амплитудой.

Для системы (рисунок 1) выходная координата определяется:

Причинами отклонения САУ от положения равновесия являются изменение входной величины
и возмущающих воздействий
.

Если
и
т.е. причины отклонения системы от положения равновесия отсутствуют, то
.

Если при отсутствии причин отклонения
,
знаменатель
, то это означает, что выходная координата
может принимать любые отличные от нуля значения, поскольку в этом случае имеем:

. (4)

Следовательно, в системе возникает незатухающие колебания при условии:

. (5)

Заметим, что это условие похоже на условие самовозбуждения усилителя с ООС Баркгаузена: самовозбуждение системы имеет место, когда усиливается столько напряжения или другой величины, сколько его (её) отводится по каналу обратной связи:

. (6)

1.2 Определение устойчивости систем автоматического управления

Любая система автоматического управления (САУ) должна быть работоспособной, т.е. нормально функционировать при воздействий возмущений различного рода. Работоспособность САУ определяется ее устойчивостью, которая является одной из основных динамиче­ских характеристик системы.

Устойчивость - свойство системы возвращаться в исходное положение равновесия или близкий к нему режим после окончания действия возмущения, вызвавшего отклонение системы от положения равновесия. Неустойчивая работа может возникнуть в любой САУ с обратной связью, при этом, система удаляется от положения равновесия.

Если известна функция веса системы ω(t ) , то линейная си­стема устойчива, если ω(t ) остается ограниченной при любых ограниченных по величине входных возмущениях:

, (7)

где с - const .

Следовательно, об устойчивости системы можно судить по общему решению линеаризованного однородного дифференциального уравнения замкнутой САУ, поскольку устойчивость не зависит от вида описываемого возмущения. Система устойчива, если переходная составляющая затухает во времени:

. (8)

Если
, то САУ неустойчива.

Если
не стремится ни к нулю, ни к бесконечности то система находится на границе устойчивости.

Поскольку общее решение дифференциального уравнения зависит от вида корней характеристического уравнения САУ, то определение устойчивости можно производить без непосредственного решения од­нородного дифференциального уравнения.

Если характеристическое уравнение линейного дифференциально­го уравнения с постоянными коэффициентами САУ имеет вид

то его решение, следующее:

, (10)

где c - постоянные интегрирования;

p t - корни характеристического уравнения.

Следовательно, САУ устойчива, если

(11)

Таким образом, для того, чтобы линейная САУ была устойчивая, необходимо и достаточно, чтобы вещественные части всех корней ха­рактеристического уравнения системы были отрицательны

R e p i < 0, (12)

а) для вещественных корней p i < 0,

, (12.а)

для вещественных корней p i > 0;

; (12.б)

б) для комплексных корней типа p i =α± при α< 0

, (12.в)

для комплексных корней p i =α± при α> 0

, (12.г)

Следовательно, САУ устойчива, если все корни характеристического уравнения (9) располагаются в левой полуплоскости комплекс­ной плоскости корней. Система находится на границе устойчивости, если хотя бы один вещественный корень или пара комплексных кор­ней находятся на мнимой оси. Различают апериодическую и колебательную границы устойчивости.

Если хотя бы один корень характеристического уравнения САУ равен нулю, то система находится на апериодической границе устой­чивости. Характеристическое уравнение в этом случае (a n = 0) име­ет следующий вид:

Система в том случае устойчива по отношению к скорости изменения регулируемой величины, по отношению же к реализуемой величи­не система нейтральна (нейтрально устойчивая система).

Если в характеристическом уравнении САУ имеется хотя бы па­ра чисто мнимых корней, то система находится на границе колебательной устойчивости. В этом случае в системе имеют место незатухающие гармонические колебания.

Таким образом, для выяснения устойчивости САУ следует решить характеристическое уравнение, т.е. найти его корни. Отыскание кор­ней характеристического уравнения возможно, поскольку W 3 (p ) обыч­но представляет собой отношение двух алгебраических полиномов. Од­нако такой прямой метод для определения устойчивости оказывается весьма трудоемким, особенно при n > 3. Кроме того, для определения устойчивости необходимо знать только знаки корней и необязательно знать их значение, т.е. непосредственное решение характеристического уравнения дает “лишнюю информацию”. Поэтому для опре­деления устойчивости целесообразно иметь косвенные методы определения знаков корней характеристического уравнения, не решая его. Эти косвенные методы определения знаков корней характеристическо­го уравнения без непосредственного его решения - критерии устойчивости.

Необходимым условием работоспособности системы автоматического управления (САУ), является её устойчивость. Под устойчивостью принято понимать свойство системы восстанавливать состояние равновесия, из которого она была выведена под влиянием возмущающих факторов после прекращения их воздействия .

Постановка задачи

Получение простого, наглядного и общедоступного инструмента для решения задач расчёта устойчивости систем автоматического управления, что является обязательным условием работоспособности любого промышленного робота и манипулятора.

Теория просто и кратко

Анализ устойчивости системы по методу Михайлова сводится к построению характеристического многочлена замкнутой системы (знаменатель передаточной функции), комплексной частотной функции (характеристического вектора):

Где и – соответственно вещественная и мнимая части знаменателя передаточной функции, по виду которой можно судить об устойчивости системы.

Замкнутая САУ устойчива, если комплексная частотная функция , начинаясь на
стрелки начало координат, проходя последовательно n квадрантов, где n – порядок характеристического уравнения системы, т. е.

(2)


Рисунок 1. Амплитудно-фазовые характеристики (годографы) критерия Михайлова: а) – устойчивой системы; б) – неустойчивой системы (1, 2) и системы на границе устойчивости (3)

САУ электроприводом манипулятора промышленного робота (МПР)


Рисунок 2 – Структурная схема САУ электроприводом МПР

Передаточная функция данной САУ имеет следующее выражение :

(3)
где kу – коэффициент усиления усилителя, kм – коэффициент пропорциональности частоты вращения двигателя величине напряжения на якоре, Tу – электромагнитная постоянная времени усилителя, Tм – электромеханическая постоянная времени двигателя с учётом инерции нагрузки (по своим динамическим характеристикам двигатель представляет собой передаточную функцию последовательно соединённых инерционного и интегрирующего звеньев), kдс – коэффициент пропорциональности между входной и выходной величинами датчика скорости, K – коэффициент усиления главной цепи: .

Численные значения в выражение передаточной функции следующие:

K = 100 град / (В∙с); kдс = 0,01 В / (град∙с); Tу = 0,01 с; Tм = 0,1с.

Заменив s на :
(4)

Решение на Python

Здесь следует отметить, что подобные задачи на Python ещё никто не решал, во всяком случае я не нашёл. Это было связано с ограниченными возможностями работы с комплексными числами. С появлением SymPy можно сделать следующее:

From sympy import * T1,T2,w =symbols("T1 T2 w",real=True) z=factor ((T1*w*I+1)*(T2*w*I+1)*w*I+1) print ("Характеристический многочлен замкнутой системы -\n%s"%z)
Где I мнимая единица, w- круговая частота, T1= Tу = 0.01 ,T2= Tм = 0.1
Получим развёрнутое выражение для многочлена:

Характеристический многочлен замкнутой системы –

Сразу видим, что многочлен третьей степени. Теперь получим мнимую и действительную части в символьном отображении:

Zr=re(z) zm=im(z) print("Действительная часть Re= %s"%zr) print("Мнимая часть Im= %s"%zm)
Получим:

Действительная часть Re= -T1*w**2 - T2*w**2 + 1
Мнимая часть Im= -T1*T2*w**3 + w

Сразу видим вторую степень действительной части и третью мнимой. Подготовим данные для построения годографа Михайлова. Введём численные значения для T1 и T2, и будем менять частоту от 0 до 100 с шагом 0.1 и построим график:

From numpy import arange import matplotlib.pyplot as plt x= y= plt.plot(x, y) plt.grid(True) plt.show()


Из графика не видно, то годограф начинается на действительной положительной оси. Нужно изменить масштабы осей. Приведу полный листинг программы:

From sympy import * from numpy import arange import matplotlib.pyplot as plt T1,T2,w =symbols("T1 T2 w",real=True) z=factor((T1*w*I+1)*(T2*w*I+1)*w*I+1) print("Характеристический многочлен замкнутой системы -\n%s"%z) zr=re(z) zm=im(z) print("Действительная часть Re= %s"%zr) print("Мнимая часть Im= %s"%zm) x= y= plt.axis([-150.0, 10.0, -15.0, 15.0]) plt.plot(x, y) plt.grid(True) plt.show()
Получим:

-I*T1*T2*w**3 - T1*w**2 - T2*w**2 + I*w + 1
Действительная часть Re= -T1*w**2 - T2*w**2 + 1
Мнимая часть Im= -T1*T2*w**3 + w


Теперь уже видно, что годограф начинается на действительной положительной оси. САУ устойчива, n=3, годограф совпадает с приведённым на первом рисунке.

Дополнительно убедится в том, что годограф начинается на действительной оси можно дополнив программу следующим кодом для w=0:

Print("Начальная точка М(%s,%s)"%(zr.subs({T1:0.01,T2:0.1,w:0}),zm.subs({T1:0.01,T2:0.1,w:0})))
Получим:

Начальная точка М(1,0)

САУ сварочного робота

Наконечник сварочного узла (НСУ) подводится к различным местам кузова автомобиля, быстро и точно совершает необходимые действия. Требуется определить устойчивость по критерию Михайлова САУ позиционированием НСУ.


Рисунок 3. Структурная схема САУ позиционированием НСУ

Характеристическое уравнение данной САУ будет иметь вид :

Где K – варьируемый коэффициент усиления системы, a – определённая положительная константа. Численные значения: K = 40; a = 0,525.

Решение на Python

rom sympy import * from numpy import arange import matplotlib.pyplot as plt w =symbols(" w",real=True) z=w**4-I*6*w**3-11*w**2+I*46*w+21 print("Характеристический многочлен замкнутой системы -\n%s"%z) zr=re(z) zm=im(z) print("Начальная точка М(%s,%s)"%(zr.subs({w:0}),zm.subs({w:0}))) print("Действительная часть Re= %s"%zr) print("Мнимая часть Im= %s"%zm) x= y= plt.axis([-10.0, 10.0, -50.0, 50.0]) plt.plot(x, y) plt.grid(True) plt.show()
Получим:

Характеристический многочлен замкнутой системы - w**4 - 6*I*w**3 - 11*w**2 + 46*I*w + 21
Начальная точка М(21,0)
Действительная часть Re= w**4 - 11*w**2 + 21
Мнимая часть Im= -6*w**3 + 46*w

Построенный годограф Михайлова, начинаясь на вещественной положительной оси (М (21,0)), огибает в положительном направлении начало координат, проходя последовательно четыре квадранта, что соответствует порядку характеристического уравнения. Значит, данная САУ позиционированием НСУ – устойчива.

Выводы

При помощи модуля SymPy Python получен простой и наглядный инструмент для решения задач расчёта устойчивости систем автоматического управления, что является обязательным условием работоспособности любого промышленного робота и манипулятора.

Ссылки

  1. Дорф Р. Современные системы управления / Р. Дорф, Р. Бишоп. – М.: Лаборатория Базовых Знаний, 2002. – 832 с.
  2. Юревич Е.И. Основы робототехники 2-е издание / Е.И. Юревич. – С-Пб.: БХВ-Петербург, 2005. – 416 с.

Следящая система (рис. 1.14, а) находится в состоянии равновесия, когда ее ошибка Это состояние может быть устойчивым или неустойчивым. Если после некоторого изменения задающего воздействия (поворота ведущего вала на угол система в результате затухающего переходного процесса (рис. 2.1, а, б) снова приходит в состояние равновесия то это состояние равновесия является устойчивым и система называется устойчивой. Когда после незначительного изменения задающего воздействия (отклонения системы от равновесного состояния) система не стремится в первоначальное состояние равновесия, а в ней возникают незатухающие колебания управляемой величины (рис. 2.1, в, г) или же изменение будет независимым от то состояние равновесия в данной системе является неустойчивым и система называется неустойчивой.

Наглядное представление об устойчивом и неустойчивом равновесных состояниях дает рассмотрение системы шар - поверхность. Шар, помещенный во впадине (рис. 3.1, а), находится в устойчивом равновесном состоянии, так как после его отклонения под влиянием внешнего воздействия он возвратится в свое первоначальное состояние. Система шар - поверхность является устойчивой. Шар, расположенный на верхней точке возвышенности (рис. , находится в неустойчивом равновесном положении: достаточно незначительного отклонения от

Рис. 3.1. К понятию устойчивости равновесных состояний системы шар-поверхность: а - устойчивое состояние; б - неустойчивое состояние; в - состояние, устойчивое при малых и неустойчивое при больших отклонениях.

этого состояния, и шар скатится по склону поверхности и не возвратится в исходное положение. Рассматриваемая система неустойчива.

Таким образом, под устойчивостью понимается свойство системы возвращаться в прежнее состояние равновесия после вывода ее из этого состояния и прекращения изменения задающего или влияния возмущающего воздействия.

Только устойчивая система является работоспособной. Поэтому одной из основных задач теории автоматического управления является исследование устойчивости САУ. Основы строгой теории устойчивости динамических систем были разработаны акад. А. М. Ляпуновым в работе «Общая задача об устойчивости движения» (1892 г.). Понятия об устойчивости, вытекающие из этой работы, заключаются в следующем.

Если система описывается линейным дифференциальным уравнением, то ее устойчивость не зависит от величины возмущения. Линейная система, устойчивая при малых возмущениях, будет устойчива и при больших. Нелинейные же системы могут быть устойчивы при малых возмущениях и неустойчивы при больших. Примером такой нелинейной системы являются стенные часы. Если неподвижному маятнику сообщить слабый толчок, то маятник, совершив несколько качаний, остановится, т. е. система устойчива при малых возмущениях. Если же маятнику сообщить более сильный толчок, то последний у заведенных часов начинает совершать незатухающие колебания. Следовательно, система неустойчива при больших возмущениях. Наглядное представление о нелинейных системах, устойчивых при малых и неустойчивых при больших возмущениях, дает рассмотрение шара, помещенного во впадине, расположенной на вершине выпуклого тела (рис. 3.1, в). При малых отклонениях, не превышающих края впадины, шар возвращается в исходное положение, т. е. система шар-поверхность устойчива. При отклонениях за край впадины шар не возвращается в исходное положение - система неустойчива. Поэтому для нелинейных систем устойчивость исследуется отдельно для случая малых возмущений, т. е. устойчивость в малом, и устойчивость при больших возмущениях, т. е. устойчивость в большом.

Согласно теореме Ляпунова, об устойчивости нелинейных систем при малых возмущениях можно судить по их линеаризированным уравнениям, достаточно точно описывающим поведение систем при малых отклонениях от состояния равновесия. Для определения устойчивости нелинейных систем при больших возмущениях необходимо пользоваться исходными нелинейными уравнениями динамики. В большинстве практических случаев системы, устойчивые при малых отклонениях, оказываются устойчивыми и при достаточно больших отклонениях, возможных в процессе эксплуатации, и поэтому вопрос об устойчивости этих систем может быть решен на основании исследования линеаризованных уравнений.

Проблема устойчивости обычно возникает в замкнутых САУ из-за влияния обратной связи. Поэтому в дальнейшем устойчивость исследуется на примерах замкнутых систем, хотя методы исследования устойчивости универсальны.