Ионное произведение воды. Водородный показатель среды

Частным случаем диссоциации (процесса распада более крупных частиц вещества — молекул ионов или радикалов — на частицы меньшего размера) является электролитическая диссоциация, при которой нейтральные молекулы вещества, называемого электролитом, в растворе (в результате воздействия молекул полярного растворителя) распадаются на заряженные частицы: катионы и анионы. Этим объясняется способность проводить ток.

Принято делить все электролиты на две группы: слабые и сильные. Вода относится к слабым электролитам, диссоциация воды характеризуется небольшим количеством диссоциированных молекул, так как они достаточно стойкие и практически не распадаются на ионы. Чистая (без примесей) вода слабо проводит электрический ток. Это обусловлено химической природой самой молекулы, когда положительно поляризованные атомы водорода внедрены в электронную оболочку сравнительно небольшого атома кислорода, который поляризован отрицательно.

Сила и слабость электролитов характеризуется (обозначается α, часто эта величина выражается в % от 0 до 100 или в долях единицы от 0 до 1) — способностью распадаться на ионы, то есть отношением количества распавшихся частиц к числу частиц до распада. Такие вещества, как кислоты, соли и основания под действием полярных распадаются на ионы полностью. Диссоциация воды сопровождается распадом молекул Н2О на протон Н+ и гидроксильную группу ОН-. Если представить уравнение диссоциации электролита в виде: М=К++А- , тогда диссоциация воды может быть выражена уравнением: Н2О↔Н++ОН-, а уравнение, с помощью которого рассчитывается степень диссоциации воды, можно представить в двух видах (через концентрацию образовавшихся протонов или концентрацию образовавшихся гидроксильных групп): α=[Н+]/[Н2О] или α=[ОН-]/[Н2О]. Так как на величину α влияет не только химическая природа вещества, но и концентрация раствора или его температура, то принято говорить о кажущейся (мнимой) степени диссоциации.

Склонность молекул слабых электролитов, включая воду, распадаться на ионы в большей степени характеризуется константой диссоциации (частный случай константы равновесия), которую принято обозначать, как Кд. Для расчета этой величины применяется закон действующих масс, который устанавливает соотношение между массами полученных и исходных веществ. Электролитическая диссоциация воды — это распад исходных молекул воды на протоны водорода и гидроксильную группу, поэтому выражается уравнением: Кд = [Н+] . [ОН-]/[Н2О]. Эта величина для воды является постоянной и зависит только от температуры, при температуре, равной 25оС, Кд=1.86.10-16.

Зная молярную массу воды (18 грамм/моль), а также пренебрегая концентрацией диссоциированных молекул и принимая массу 1 дм3 воды за 1000 г, можно рассчитать концентрацию недиссоциированных молекул в 1 дм3 воды: [Н2О]=1000/18,0153=55,51 моль/дм3. Тогда из уравнения константы диссоциации можно найти произведение концентраций протонов и гидроксильных групп: [Н+].[ОН-]=1,86.10-16.55,51=1.10-14. При извлечении квадратного корня из полученной величины получают концентрацию протонов (ионов водорода), определяющую кислотность раствора и равную концентрации гидроксильных групп: [Н+]=[ОН-]=1.10-7.

Но в природе воды такой чистоты не существует из-за присутствия в ней растворенных газов или загрязнения воды другими веществами (фактически вода — это раствор различных электролитов), поэтому при 25оС концентрация протонов водорода или концентрация гидроксильных групп отличается от величины 1.10-7. То есть кислотность воды обусловлена протеканием не только такого процесса, как диссоциация воды. является отрицательным логарифмом концентрации водородных ионов (рН), он введен для оценки кислотности или щелочности воды и водных растворов, так как числами с отрицательными степенями пользоваться затруднительно. Для чистой воды рН=7, но так как в природе чистой воды нет, и диссоциация воды протекает наряду с распадом других растворенных электролитов, то водородный показатель может быть меньше или больше 7, то есть для воды, практически, рН≠7.

Учебное пособие предназначено для студентов нехимических специальностей высших учебных заведений. Оно может служить пособием для лиц, самостоятельно изучающих основы химии, и для учащихся химических техникумов и старших классов средней школы.

Легендарный учебник, переведенный на многие языки стран Европы, Азии, Африки и выпущенный общим тиражом свыше 5 миллионов экземпляров.

При изготовлении файла, использован сайт http://alnam.ru/book_chem.php

Книга:

<<< Назад
Вперед >>>

Чистая вода очень плохо проводит электрический ток, но все же обладает измеримой электрической проводимостью, которая объясняется небольшой диссоциацией воды на ионы водорода и гидроксид-ионы:

По величине электрической проводимости чистой воды можно вычислить концентрацию ионов водорода и гидроксид-ионов в воде. При 25°C она равна 10 -7 моль/л.

Напишем выражение для константы диссоциации воды:

Перепишем это уравнение следующим образом:

Поскольку степень диссоциации воды очень мала, то концентрация недиссоциированных молекул H 2 O в воде практически равна общей концентрации воды, т. е. 55,55 моль/л (1 л. содержит 1000 г. воды, т. е. 1000:18.02=55.55 моль). В разбавленных водных растворах концентрацию воды можно считать такой же. Поэтому, заменив в последнем уравнении произведение новой константой K H 2 O будем иметь:

Полученное уравнение показывает, что для воды и разбавленных водных растворов при неизменной температуре произведение концентрата ионов водорода и гидроксид-ионов есть величина постоянная, Эта постоянная величина называется ионным произведением воды. Численное значение ее нетрудно получить, подставив в последнее уравнение концентрации ионов водорода и гидроксид-ионов. В чистой воде при 25°C ==1·10 -7 моль/л. Поэтому для указанной температуры:

Растворы, в которых концентрации ионов водорода и гидроксид-ионов одинаковы, называются нейтральными растворами. При 25°C, как уже сказано, в нейтральных растворах концентрация как ионов водорода, так и гидроксид-ионов равна 10 -7 моль/л. В кислых растворах больше концентрация ионов водорода, в щелочных - концентрация гидроксид-ионов. Но какова бы ни была реакция раствора, произведение концентраций ионов водорода и гидроксид-ионов остается постоянным.

Если, например, к чистой воде добавить столько кислоты, чтобы концентрация ионов водорода повысилась до 10 -3 моль/л, то концентрация гидроксид-ионов понизится так, что произведение останется равным 10 -14 . Следовательно, в этом растворе концентрация гидроксид-ионов будет:

10 -14 /10 -3 =10 -11 моль/л

Наоборот, если добавить к воде щелочи и тем повысить концентрацию гидроксид-ионов, например, до 10 -5 моль/л, то концентрация ионов водорода составит:

10 -14 /10 -5 =10 -9 моль/л

Эти примеры показывают, что если концентрация ионов водорода в водном растворе известна, то тем самым определена и концентрация гидроксид-ионов. Поэтому как степень кислотности, так и степень щелочности раствора можно количественно охарактеризовать концентрацией ионов водорода:

Кислотность или щелочность раствора можно выразить другим, более удобным способом: вместо концентрации ионов водорода указывают ее десятичный логарифм, взятый с обратным знаком. Последняя величина называется водородным показателем и обозначается через pH:

Например, если =10 -5 моль/л, то pH=5 ; если =10 -9 моль/л, то pH=9 и т. д. Отсюда ясно, что в нейтральном растворе (=10 -7 моль/л) pH=7. В кислых растворах pH<7 и тем меньше, чем кислее раствор. Наоборот, в щелочных растворах pH>7 и тем больше, чем больше щелочность раствора.

Для измерения pH существуют различные методы. Приближенно реакцию раствора можно определить с помощью специальных реактивов, называемых индикаторами, окраска которых меняется в зависимости от концентрации ионов водорода. Наиболее распространенные индикаторы - метиловый оранжевый, метиловый красный, фенолфталеин. В табл. 17 дана характеристика некоторых индикаторов.

Для многих процессов значение pH играет важную роль. Так, pH крови человека и животных имеет строго постоянное значение. Растения могут нормально произрастать лишь при значениях pH почвенного раствора, лежащих в определенном интервале, характерном для данного вида растения. Свойства природных вод, в частности их коррозионная активность, сильно зависят от их pH.

Таблица 17. Важнейшие индикаторы

<<< Назад
Вперед >>>

Исключительно важную роль в биологических процессах играет вода, являющаяся обязательной составной частью (от 58 до 97%) всех клеток и тканей человека, животных, растений и простейших организмов Вода- это среда, в которой протекают самые разнообразные биохимические процессы.

Вода обладает хорошей растворяющей способностью и вызывает электролитическую диссоциацию многих растворенных в ней веществ.

Процесс диссоциации воды согласно теории Бренстеда протекает по уравнению:

Н 2 0+Н 2 0 Н 3 О + + ОН - ; ΔН дис = +56,5 КДж/моль

Т.е. одна молекула воды отдает, а другая - присоединяет протон, происходит автоионизация воды:

Н 2 0 Н + + ОН - - реакция депротонирования

Н 2 0 + Н + Н 3 О + - реакция протонирования

Константа диссоциации водыпри 298°К, определенная методом электрической проводимости равна:

а(Н +) - активность ионов Н + (для краткости вместо НзО + пишут Н +);

а(ОН -) - активность ионов ОН - ;

а(Н 2 0)- активность воды;

Степень диссоциации воды очень мала, поэтому активность водород - и гидроксид - ионов в чистой воде практически равны их концентрациям. Концентрация воды является постоянной величиной и равна 55,6 моль.

(1000г: 18г/моль= 55,6 моль)

Подставляя в выражение для константы диссоциации Кд(Н 2 0) это значение, а вместо активностей водород - и гидроксид - ионов их концентрации, получают новое выражение:

К(Н 2 0)=С(Н +)×С(ОН -)=10 -14 мол 2 /л 2 при 298К,

Более точно К(Н 2 0)= а(Н +)×а(ОН -)= 10 -14 моль 2 л 2 -

К(Н 2 0) называют ионным произведением воды или константой автоионизации.

В чистой воде или любом водном растворе при постоянной температуре произведение концентраций (активностей) водород - и гидроксид - ионов есть величина постоянная, называемая ионным произведением воды.

Константа К(Н 2 0) зависит от температуры. При повышении температуры она увеличивается, т.к. процесс диссоциации воды - эндотермический. В чистой воде или водных растворах разных веществ при 298К активности (концентрации) водород - и гидроксид - ионов будут составлять:

а(Н +)=а(ОН -)=К(Н 2 0) = 10 -14 =10 -7 моль/л.

В кислых или щелочных растворах эти концентрации уже не будут равны друг другу, но изменяться будут сопряжено: при увеличении одной из них соответственно будет уменьшаться другая и наоборот, например,

а(Н +)=10 -4 , а(ОН -)=10 -10 , их произведение всегда составляет 10 -14

Водородный показатель

Качественно реакцию среды выражают через активность водородных ионов. На практике пользуются не этой величиной, а водородным показателем рН - величиной, численно равной отрицательному десятичному логарифму активности (концентрации) водородных ионов, выраженной в моль/л.

рН= - lga (H + ),

а для разбавленных растворов

рН= - lgC (H + ).

Для чистой воды и нейтральных сред при 298К рН=7; для кислых растворов рН<7, а для щелочных рН>7.

Реакцию среды можно охарактеризовать и гидроксильным показателем:

рОН= - lga (OH - )

или приближенно

рОН= - Ig С(О H - ).

Соответственно в нейтральной среде рОН=рН=7; в кислой среде рОН>7, а в щелочной рОН<7.

Если взять отрицательный десятичный логарифм выражения ионного произведения воды, получим:

рН + рОН=14.

Следовательно, рН и рОН также являются сопряженными величинами. Их сумма для разбавленных водных растворов всегда равна 14. Зная рН, легко вычислить рОН:

рН=14 – рОН

и наоборот:

р OH = 14 - рН.

В растворах различают активную, потенциальную (резервную) и общую кислотность.

Активная кислотность измеряется активностью (концентрацией) водород-ионов в растворе и определяет рН раствора. В растворах сильных кислот и оснований рН зависит от концентрации кислотыили основания, и активность ионов Н + и ОН - может быть рассчитана по формулам:

а(Н + )= C(l/z кислота)×α каж.; рН= - lg а(Н + )

a(ОН - )=C(l/z основание)×α каж.; рН= - lg а(ОН - )

рН= - lgC(l/z кислота) – для предельно разбавленных растворов сильных кислот

рОН= - lgC(l/z основание) - для предельно разбавленных растворов оснований

Потенциальная кислотность измеряется количеством водород-ионов, связанных в молекулахкислоты, т.е. представляет собой «запас» недиссоциированных молекул кислоты.

Общая кислотность - сумма активной и потенциальной кислотностей, которая определяется аналитической концентрацией кислоты и устанавливается титрованием

Одним из удивительных свойств живых организмов является кислотно-основной

гомеостаз - постоянство рН биологических жидкостей, тканей и организмов. В таблице 1 представлены значения рН некоторых биологических объектов.

Таблица 1

Из данных таблицы видно, что рН различных жидкостей в организме человека изменяется в довольно широких пределах в зависимости от местонахождения. КРОВЬ, как и другие биологические жидкости, стремится сохранить постоянное значение водородного показателя, значения которого представлены в таблице 2

Таблица 2

Изменения рН от указанных величин всего на 0,3 в сторону увеличения или уменьшения приводит к изменению обмена ферментативных процессов, что у человека вызывает тяжелое болезненное состояние. Изменение рН всего на 0,4 уже несовместимо с жизнью. Исследователи установили, что в регуляции кислотно-щелочного равновесия участвуют следующие буферные системы крови: гемоглобиновая, бикарбонатная, белковая и фосфатная. Доля каждой системы в буферной емкости представлена в таблице 3.

Таблица 3

Все буферные системы организма по механизму действия едины, т.к. состоят они из слабой кислоты: угольной, дигидрофосфорной (дигидрофосфат-ион), белковой, гемоглабиновый (оксогемоглобиновой) и солей этих кислот, в основном натриевых, обладающих свойствами слабых оснований. Но так как по быстроте ответной реакции бикарбонатная система в организме не имеет себе равных, то способность сохранять постоянство среды в организме рассмотрим с помощью этой системы.

Важной особенностью жидкой воды является ее способность к самопроизвольной диссоциации по реакции:

Н 2 О(ж) « Н + (водн) + ОН - (водн)

Этот процесс называется еще самоионизацией или автопротолизом. Образовавшиеся протоны Н + и анионы ОН - окружены определенным числом полярных молекул воды, т.е. гидратированы: Н + ×nH 2 O; OH - ×mH 2 O. Первичная гидратация может быть представлена рядом аквакомплексов: Н 3 О + ; Н 5 О 2 + ; Н 7 О 3 + ; Н 9 О 4 + , среди которых преобладают ионы Н 9 О 4 + (Н + ×4H 2 O). Время жизни всех этих ионов в воде очень мало, т.к. протоны постоянно мигрируют от одних молекул

воды к другим. Обычно в уравнениях для простоты используют только катион состава Н 3 О + (Н + ×H 2 O), называемый ионом гидроксония.

Процесс диссоциации воды с учетом гидратации протона и образования иона гидроксония может быть записан: 2Н 2 О « Н 3 О + + ОН -

Вода – слабый электролит, степень диссоциации которого

Поскольку à С равн (Н 2 О)» С исх (Н 2 О) или [Н 2 О] равн ≈ [Н 2 О] исх

– количество молей содержащееся в одном литре воды. С исх (Н 2 О) в разбавленном растворе остается постоянной. Это обстоятельство позволяет включить С равн (Н 2 О) в константу равновесия.

Таким образом, произведение двух постоянных величин дает новую постоянную, которую называют ионным произведением воды . При температуре 298 К .

¾- Постоянство ионного произведения воды означает, что в любом водном растворе: кислотном, нейтральном или щелочном – всегда имеются оба вида ионов (Н + и ОН -)

¾- В чистой воде концентрации водородных и гидроксильных ионов равны и при нормальных условиях составляют:

K w 1/2 = 10 -7 моль/л.

¾- При добавлении кислот концентрация [Н + ] увеличивается, т.е. равновесие смещается влево, а концентрация [ОН - ] уменьшается, однако К w остается равной 10 -14 .

В кислой среде > 10 -7 моль/л, а < 10 -7 моль/л

В щелочной среде < 10 -7 моль/л, а > 10 -7 моль/л

На практике для удобства используют водородный показатель (рН) и гидроксильный показатель (рОН) среды.

Это есть взятый с обратным знаком десятичный логарифм концентраций (активностей) соответственно ионов водорода или гидроксильных ионов в растворе: рН = - lg, рОН = - lg

В водных растворах рН + рОН = 14.

Таблица№14.

K w зависит от температуры (т.к. диссоциация воды – эндотермический процесс)

K w (25 o C) = 10 -14 Þ рН = 7

K w (50 o C) = 5,47×10 -14 Þ рН = 6,63

Измерение рН используется чрезвычайно широко. В биологии и медицине величина рН биологических жидкостей служит для определения патологий. Например, в норме рН сыворотки крови состовляет 7,4±0,05; слюны – 6,35..6,85; желудочного сока – 0,9..1,1; слез – 7,4±0,1. В сельском хозяйстве рН характеризует кислотность почв, экологическое состояние природных вод и т.д.



Кислотно-основными индикаторами называются химические соединения, изменяющие свою окраску в зависимости от рН среды, в которой они находятся. Вы, наверное, обращали внимание на то, как меняется цвет чая, если в него положить лимон – это пример действия кислотно-основного индикатора.

Индикаторы, как правило, представляют собой слабые органические кислоты или основания и могут существовать в растворах в виде двух таутомерных форм:

HInd « H + + Ind - , где HInd – кислотная форма (это форма, которая преобладает в кислых растворах); Ind – основная форма (преобладает в щелочных растворах).

Поведение индикатора подобно поведению слабого электролита в присутствии более сильного с одноименным ионом. Чем больше следовательно равновесие смещается в сторону существования кислотной формы HInd и наоборот (принцип Ле-Шателье).

Опыт показывает наглядно возможность использования некоторых индикаторов:

Таблица№15

Специальные приборы – рН-метры позволяют измерять рН с точностью до 0,01 в интервале от 0 до 14. Определение основано на измерении ЭДС гальванического элемента, один из электродов которого является, например, стеклянным.

Наиболее точно концентрацию водородных ионов можно определить методом кислотно-основного титрования. Титрование – это процесс постепенного добавления небольшими порциями раствора известной концентрации (титранта) к титрируемому раствору, концентрацию которого хотим определить.

Буферные растворы – это системы, рН которых относительно мало изменяется при разбавлении или добавлении к ним небольших количеств кислот или щелочей. Чаще всего они представляют собой растворы, содержащие:

a) а)Слабую кислоту и ее соль(СН 3 СООН + СН 3 СООNa) – ацетатный буфер

в)Слабое основание и его соль(NH 4 OH + NH 4 Cl) – аммиачно-аммонийный буфер

с)Две кислые соли с разными K д (Na 2 HPO 4 + NaH 2 PO 4) – фосфатный буфер

Регулирующий механизм буферных растворов рассмотрим на примере ацетатного буферного раствора.

CH 3 COOH « CH 3 COO - + H + ,

CH 3 COONa « CH 3 COO - + Na +

1. 1)если добавить небольшое количество щелочи к буферной смеси:

CH 3 COOH + NaOH « CH 3 COONa + H 2 O,

NaOH нейтрализуется уксусной кислотой с образованием более слабого электролита H 2 O. Избыток натрия ацетата смещает равновесие в сторону образовавшейся кислоты.

2. 2)если добавить небольшое количество кислоты:

CH 3 COONa + HCl « CH 3 COOH + NaCl

Катионы водорода Н + связывают ионы CH3COO -

Найдем концентрацию ионов водорода в буферном ацетатном растворе:

Равновесная концентрация уксусной кислоты рана C исх,к (т.к. слабый электролит), а [СH 3 COO -- ] = C соли (т.к. соль является сильным электролитом), то . Уравнение Гендерсона-Хассельбаха:

Таким образом, рН буферных систем определяется соотношением концентраций соли и кислоты. При разбавлении это соотношение не меняется и рН буфера не меняется при разбавлении, это отличает буферные системы от раствора чистого электролита, для которого справедлив закон разведения Оствальда.

Существует две характеристики буферных систем:

1.Буферная сила . Абсолютная величина буферной силы зависит от

общей концентрации компонентов буферной системы, т.е. чем больше концентрация буферной системы, тем больше требуется щелочи (кислоты) для одного и того же изменения рН.

2.Буферная емкость (В). Буферная емкость – это предел, в котором проявляется буферное действие. Буферная смесь поддерживает рН постоянным только при условии, что количество прибавляемых к раствору сильной кислоты или основания не превышает определенной предельной величины – В. Буферная емкость определяется числом г/экв сильной кислоты (основания), которое необходимо прибавить к одному литру буферной смеси, чтобы изменить значение рН на единицу, т.е. . Вывод: Свойства буферных систем:

1. 1. мало зависит от разбавления.

2. 2.Прибавление сильных кислот (оснований) мало изменяет в пределах буферной емкости В.

3. 3.Буферная емкость зависит от буферной силы (от концентрации компонентов).

4. 4.Максимальное действие проявляет буфер в случае, когда кислота и соль присутствуют в растворе в эквивалентных количествах:

С соли = С к-ты; = К д,к; рН = рК д,к (рН определяется значением К д).

Гидролиз – это химическое взаимодействие воды с солями . Гидролиз солей сводиться к процессу передачи протонов. В результате его протекания появляется некоторый избыток водородных или гидроксильных ионов, сообщающих раствору кислотные или щелочные свойства. Таким образом, гидролиз обратен процессу нейтрализации.

Гидролиз солей включает 2 стадии:

а)Электролитическая диссоциация соли с образованием гидратированных ионов:. KCl à K + + Cl - K + + xH 2 O à K + × xH 2 O (связь донорно-акцепторная, донор – атом О, имеющий 2 неподеленные электронные пары,

акцептор – катионы с вакантными орбиталями)

Cl - + yH 2 O « Cl - ×yH 2 O (водородная связь)

в) Гидролиз по аниону. Cl - + HOH à HCl + OH -

с) Гидролиз по катиону. K + + HOH à KOH +

Гидролизу подвергаются все соли, образованные с участием слабых

электролитов:

1.Соль, образованная анионом слабых кислот и катионом сильных оснований

CH 3 COONa + HOH « CH 3 COOH + NaOH

CH 3 COO - + НОН « CH 3 COOН + OH - , рН > 7

Анионы слабых кислот выполняют функцию оснований по отношению к воде – донору протонов, что приводит к увеличению концентрации ОН - , т.е. подщелачиванию среды.

Глубина протекания гидролиза определяется: степенью гидролиза a г:

– концентрация соли, подвергшейся гидролизу

– концентрация исходной соли

a г невелика, например, для 0,1 моля раствора CH 3 COONa при 298 К она равна 10 -4 .

При гидролизе в системе устанавливается равновесие, характеризующееся К р

Следовательно, чем меньше константа диссоциации, тем больше константа гидролиза. Степень гидролиза с константой гидролиза связана уравнением:

С увеличением разбавления, т.е. уменьшением С 0 , степень гидролиза увеличивается.

2. 2.Соль, образованная катионом слабых оснований и анионом сильных кислот

NH 4 Cl + HOH ↔ NH 4 OH +

NH 4 + + HOH ↔ NH 4 OH + H + , pH < 7

Протолитическое равновесие смещено влево, катион слабого основания NH 4 + выполняет функцию кислоты по отношению к воде, что приводит к подкислению среды. Константа гидролиза определяется по уравнению:

Равновесная концентрация ионов водорода может быть вычислена: [Н + ] равн = a г × С 0 (исходная концентрация соли), где

Кислотность среды зависит от исходной концентрации солей подобного вида.

3. 3.Соль, образованная анионом слабых кислот и катионом слабых оснований. Гидролизуется и по катиону и по аниону

NH 4 CN + HOH à NH 4 OH + HCN

Для определения рН среды раствора сравнивают К Д,к и К Д,осн

К Д,к > К Д,осн à среда слабо кислая

К Д,к < К Д,осн à среда слабо щелочная

К Д,к = К Д,осн à среда нейтральная

Следовательно, степень гидролиза этого вида солей не зависит от их концентрации в растворе.

т.к. и [ОН - ] определяются К Д,к и К Д,осн, то

рН раствора также не зависит от концентраций соли в растворе.

Соли, образованные многозарядным анионом и однозарядным катионом (сульфиды, карбонаты, фосфаты аммония) практически полностью гидролизуются по первой ступени, т.е. находятся в растворе в виде смеси слабого основания NH 4 OH и его соли NH 4 HS, т.е. в виде аммонийного буфера.

Для солей, образованных многозарядным катионом и однозарядным анионом (ацетаты, формиаты Al, Mg, Fe, Cu) гидролиз усиливается при нагревании и приводит к образованию основных солей.

Гидролиз нитратов, гипохлоритов, гипобромитов Al, Mg, Fe, Cu протекает полностью и необратимо, т.е. соли не выделены из растворов.

Соли: ZnS, AlPO 4 , FeCO 3 и др. в воде малорастворимы, тем не менее часть их ионов принимает участие в процессе гидролиза, это приводит к некоторому возрастанию их растворимости.

Сульфиды хрома и алюминия гидролизуются полностью и необратимо с образованием соответствующих гидроксидов.

4. 4.Соли, образованные анионом сильных кислот и сильных оснований гидролизу не подвергаются .

Чаще всего гидролиз ‑ вредное явление, вызывающее различные осложнения. Так при синтезе неорганических веществ из водных растворов в получаемом веществе появляются примеси – продукты его гидролиза. Некоторые соединения из-за необратимо протекающего гидролиза вообще не удается синтезировать.

·-если гидролиз протекает по аниону, то в раствор добавляют избыток щелочи

·-если гидролиз протекает по катиону, то в раствор добавляют избыток кислоты

Итак, первая качественная теория растворов электролитов была высказана Аррениусом (1883 – 1887 г.). По этой теории:

1. 1.Молекулы электролита диссоциируют на противоположные ионы

2. 2.Между процессами диссоциации и рекомбинации устанавливается динамическое равновесие, которое характеризуется К Д. Это равновесие подчиняется закону действия масс. Долю распавшихся молекул характеризует степень диссоциации a. К Д и a связывает закон Оствальда.

3. 3.Раствор электролита (по Аррениусу) – это смесь молекул электролита, его ионов и молекул растворителя, между которыми отсутствует взаимодействие.

Вывод: теория Аррениуса позволила объяснить многие свойства растворов слабых электролитов при небольшой концентрации.

Однако, теория Аррениуса носила только физический характер, т.е. не рассматривала вопросы:

· По какой причине вещества в растворах распадаются на ионы?

· Что происходит с ионами в растворах?

Дальнейшее развитие теория Аррениуса получила в работах Оствальда, Писаржевского, Каблукова, Нернста и т.д. Например, на важное значение гидратации впервые указал Каблуков (1891), положив начало развитию теории электролитов в направлении, которое указывал Менделеев (т.е. ему впервые удалось объединить сольватную теорию Менделеева с физической теорией Аррениуса). Сольватация – это процесс взаимодействия электролита

молекулами растворителя с образованием комплексных соединений сольватов. Если растворителем является вода, следовательно, процесс взаимодействия электролита с молекулами воды называется гидратацией, а аквакомплексы – кристаллогидратами.

Рассмотрим пример диссоциации электролитов, находящихся в кристаллическом состоянии. Этот процесс возможно представить в две стадии:

1. 1.разрушение кристаллической решетки вещества DН 0 кр > 0, процесс образования молекул (эндотермический)

2. 2.образование сольватированных молекул, DН 0 сольв < 0, процесс экзотермический

Результирующая теплота растворения равна сумме теплот двух стадий DН 0 раств = DН 0 кр + DН 0 сольв и может быть как отрицательной, так и положительной. Например, энергия кристаллической решетки KCl = 170 ккал/моль.

Теплота гидратации ионов К + = 81 ккал/моль, Cl - = 84 ккал/моль, а результирующая энергия равна 165 ккал/моль.

Теплота гидратации частично покрывает энергию необходимую для выделения ионов из кристалла. Оставшиеся 170 - 165 = 5 ккал/моль могут быть покрыты за счет энергии теплового движения, и растворение сопровождается поглощением теплоты из окружающей среды. Гидраты или сольваты облегчают эндотермический процесс диссоциации, затрудняя рекомбинацию.

А вот ситуация, когда присутствует только одна из двух названных стадий:

1.растворение газов – нет первой стадии разрушения кристаллической решетки, остается экзотермическая сольватация, следовательно растворение газов, как правило, экзотермично.

2.при растворении кристаллогидратов отсутствует стадия сольватации, остается лишь эндотермическое разрушение кристаллической решетки. Например, раствор кристаллогидрата: CuSO 4 × 5H 2 O (т) à CuSO 4 × 5H 2 O (р)

DН раств = DН кр = + 11,7 кДж/моль

Раствор безводной соли: CuSO 4 (т) à CuSO 4 (р) à CuSO 4 × 5H 2 O (р)

DН раств =DН сольв + DН кр = - 78,2 + 11,7 = - 66,5 кДж/моль

Чистая вода, хоть и плохо (по сравнению с растворами электролитов), но может проводить электрический ток. Это вызвано способностью молекулы воды распадаться (диссоциировать) на два иона которые и являются проводниками электрического тока в чистой воде (ниже под диссоциацией подразумевается электролитическая диссоциация - распад на ионы): H 2 O ↔ H + + OH -

Примерно на 556 000 000 не диссоциированных молекул воды диссоциирует только 1 молекула, однако это 60 000 000 000 диссоциированных молекул в 1мм 3 . Диссоциация обратима, то есть ионы H + и OH - могут снова образовать молекулу воды. В итоге наступает динамическое равновесие при котором количество распавшихся молекул равно количеству образовавшихся из H + и OH - ионов. Другими словами скорости обоих процессов будут равны. Для нашего случая, уравнение скорости химической реакции можно написать так:

υ 1 = κ 1 (для диссоциации воды)

υ 2 = κ 2 (для обратного процесса)

где υ - скорость реакции; κ - константа скорости реакции (зависящая от природы реагирующих веществ и температуры); , и - концентрации (моль/л).

В состоянии равновесия υ 1 = υ 2 , следовательно: κ 1 = κ 2

Так как, при определенной температуре, величины используемые в расчете ионного произведения воды (K, ) постоянны, значение ионного произведения воды так же постоянно. А поскольку при диссоциации молекулы воды образуется одинаковое количество ионов и , получается что для чистой воды концентрации и будут равны 10 -7 моль/л. Из постоянства ионного произведения воды следует, что если количество ионов H + становится больше, то количество ионов HO - становится меньше. Например, если к чистой воде добавить сильную кислоту HCl, она как сильный электролит вся продиссоциирует на H + и Cl - , в результате концентрация ионов H + резко увеличится, и это приведет к увеличению скорости процесса противоположного диссоциации, так как она зависит от концентраций ионов H + и OH - : υ 2 = κ 2

В ходе ускорившегося процесса противоположного диссоциации, концентрация ионов HO - уменьшится до величины соответствующей новому равновесию, при котором их будет так мало, что скорости диссоциации воды и обратного процесса снова будут равны. Если концентрация получившегося раствора HCl равна 0,1моль/л, равновесная концентрация будет равна: = 10 -14 /0,1 = 10 -13 моль/л

Ионное произведение воды ́ - произведение концентраций ионов водорода Н + и ионов гидроксила OH − в воде или в водныхрастворах, константа автопротолиза воды.



Вода, хотя и является слабым электролитом, в небольшой степени диссоциирует:

Равновесие этой реакции сильно смещено влево. Константу диссоциации воды можно вычислить по формуле:

· - концентрация ионов гидроксония (протонов);

· - концентрация гидроксид-ионов;

· - концентрация воды (в молекулярной форме) в воде;

Концентрация воды в воде, учитывая её малую степень диссоциации, величина практически постоянная и составляет (1000 г/л)/(18 г/моль) = 55,56 моль/л.

При 25 °C константа диссоциации воды равна 1,8·10 −16 моль/л. Уравнение (1) можно переписать как:

Константа K в, равная произведению концентраций протонов и гидроксид-ионов, называется ионным произведением воды . Она является постоянной не только для чистой воды, но также и для разбавленных водных растворов веществ. C повышением температуры диссоциация воды увеличивается, следовательно, растёт и K в, при понижении температуры - наоборот. Практическое значение ионного произведения воды велико, так как оно позволяет при известной кислотности (щёлочности) любого раствора (то есть при известной концентрации или ) найти соответственно концентрации или . Хотя в большинстве случаев для удобства представления пользуются не абсолютными значениями концентраций, а взятыми с обратными знаком их десятичными логарифмами - соответственно, водородным показателем (pH) и гидроксильным показателем (pOH).

Так как K в - константа, при добавлении к раствору кислоты (ионов H +), концентрация гидроксид-ионов OH − будет падать и наоборот. В нейтральной среде = = моль/л. При концентрации > 10 −7 моль/л (соответственно, концентрации < 10 −7 моль/л) среда будет кислой ; При концентрации > 10 −7 моль/л (соответственно, концентрации < 10 −7 моль/л) - щелочной .

27. Буферные растворы: их состав, свойства, механизм действия. Буферная емкость

Буферные растворы - это растворы, содержащие буферные системы. Буферными системами называются смеси, в составе которых содержатся в определенном количественном соотношении слабые кислоты и их соли с сильными основаниями или слабые основания и их соли с сильными кислотами. Такие растворы обладают устойчивой концентрацией ионов Н+ при разбавлении нейтральным растворителем (водой) и добавлении к ним определенного количества сильных кислот или оснований.

Буферные растворы находятся в водах мирового океана, почвенных растворах и живых организмах. Эти системы выполняют функции регуляторов, поддерживающих активную реакцию среды при определенном значении, необходимом для успешного протекания реакций обмена веществ. Буферные растворы классифицируются на кислотные и основные. Примером первых может быть ацетатная буферная система, вторых - аммонийная. Различают естественные и искусственные буферные растворы. Естественным буферным раствором является кровь, содержащая гидрокарбонатную, фосфатную, белковую, гемоглобиновую и кислотную буферные системы. Искусственным буферным раствором может быть ацетатный буфер, состоящий из СН3СООН.

Особенности внутреннего состава и механизма действия буферных систем рассмотрим на примере ацетатной буферной системы: ацетатная кислота/ацетат натрия. В водной среде компоненты буферной системы подвергаются электролитической диссоциации. Ацетат натрия как соль слабой кислоты и сильного основания целиком диссоциирует на ионы. Наличие анионов в такой буферной смеси зависит от концентрации в ней соли и степени ее диссоциации. Концентрация ионов Н+ в буферной системе прямо пропорциональна концентрации в ней кислоты и обратно пропорциональна содержанию в ней соли этой кислоты.

Таким образом, концентрация ионов Н+ в основном буфере прямо пропорциональна концентрации в нем соли и обратно пропорциональна концентрации основания.

примеру, необходимо приготовить ацетатный буфер с несколькими значениями pH. Вначале приготовляют 5М растворы ацетатной кислоты и ацетата натрия. Для приготовления первого раствора берут по 50 мл каждого из компонентов. Руководствуясь формулой, определяют концентрацию ионов Н+ в полученном растворе.

Для следующего буферного раствора берут 80 мл раствора кислоты и 20 мл раствора соли, приготовленных ранее. Существует ряд прописей различных буферных растворов, применяемых в химическом анализе и лабораторной практике.

Для буферных растворов характерны некоторое свойства. К таковым, в первую очередь, относится буферность – способность сохранять постоянство концентрации ионов Н+ при добавлении в буферный раствор определенного количества сильной кислоты или сильного основания. Например, если к ацетатному буферу добавить небольшое количество хлоридной кислоты, сдвига рН в кислую сторону не произойдет, так как хлоридная кислота вступит в реакцию обменного разложения с солью слабой кислоты. В результате реакции сильная кислота, способная сдвинуть рН в кислую сторону, заменяется слабой кислотой и нейтральной солью. Степень диссоциации раствора слабого электролита при увеличении его концентрации уменьшается, стремится к нулю, и сдвиг рН не происходит.

Буферная ёмкость раствора (от англ. buffer - амортизатор, англ. buff - смягчать толчки) - такое количество кислоты или основания, нужное для изменения pH буферного раствора ровно на 1.

Буферная смесь, буферный раствор, буферная система - сочетание веществ, система, поддерживающая постоянство pH.