Функции белка в клеточной мембране. Мембранные белки, их структура свойства и особенности

: характеристика и структурные принципы

1. Структура мембранных белков

Основная роль липидов в составе мембран заключается в стабилизации бислойной структуры, а белки являются активными компонентами биомембран. Мы обсудим некоторые принципы, оказавшиеся полезными для выяснения структурных особенностей мембранных белков. Мы приведем примеры, иллюстрирующие эти принципы.

На заре развития мембранологии полагали, что мембранные белки по своей структуре довольно гомогенны и уложены в виде 3-слоев по поверхности бислоя. Сейчас скорее склонны считать, что по крайней мере у трансмембранных белков те их участки, которые погружены в мембрану, содержат а-спирали. Конечно, очень хотелось бы сделать какие-то однозначные выводы по этому поводу, но они должны основываться на фактических данных. Перед лицом огромного структурного разнообразия растворимых белков приходишь к заключению, что интегральные мембранные белки могут оказаться гораздо сложнее, чем мы сейчас представляем. Классификация растворимых белков по типам структур была проведена только после того, как установили с высоким разрешением структуру более 100 различных белков. Что касается трансмембранных белков, то это удалось сделать только в одном случае - для белка фотосинтетического реакционного центра бактерий. Вместе с электронно-микроскопическими данными низкого разрешения о структуре бактериородопсина это единственный источник, на котором может основываться построение моделей для большинства других трансмембранных белков.

Еще один важный момент - способы прикрепления белков к мембране. Они схематически представлены на рис. 3.1.

1. Связывание с белками, погруженными в бислой. В качестве примеров можно привести Fi-часть Н + -АТРазы, которая связывает ся с Fo-частью, погруженной в мембрану; можно упомянуть также некоторые белки цитоскелета.

2. Связывание с поверхностью бислоя. Это взаимодействие имеет в первую очередь электростатическую природу или гидрофобную. На поверхности некоторых мембранных белков имеются гидрофобные домены, образующиеся благодаря особеностям вторичной или третичной структуры. Указанные поверхностные взаимодействия могут использоваться как дополнение к другим взаимодействиям, например к трансмембранному заякориванию.

3.Связывание с помощью гидрофобного «якоря»; эта структура обычно выявляется как последовательность неполярных аминокислотных остатков. Некоторые мембранные белки используют в качестве якоря кова-лентно связанные с ними жирные кислоты или фосфолипиды.

4.Трансмембранные белки. Одни из них пересекают мембрану только один раз, другие - несколько раз.

Различиями между наружными и внутренними мембранными белками не задается однозначно способ их прикрепления к бисЛою; эти различия определяют лишь относительную силу их связывания.


2. Очистка мембранных белков

Для очистки интегральных мембранных белков и получения их в биохимически активной форме необходимы детергенты, позволяющие солюбилизировать белки и сохранить их в растворе. Соответствующие требования к детергентам и правилам обращения с ними создают дополнительные проблемы помимо тех, с которыми обычно сталкиваются при очистке белков. Для выделения интегральных мембранных белков разработано много специальных методов, однако большинство схем очистки основано на тех же хроматографических и гидродинамических методиках, которые используются для растворимых белков. Это хроматография на ДЭАЭ-целлюлозе, сефарозе или гидроксила-патите, гель-фильтрация, центрифугирование в градиенте плотности сахарозы и т. д. Очень важен правильный выбор детергента, поскольку именно детергент разрушает биомембрану, занимая место липидов, окружающих тот или иной белок, и определяет стабильность белка в растворе. Механизмы действия детергентов рассмотрены в обзоре.

2.1. ДЕТЕРГЕНТЫ

В течение последних двух десятилетий появилось очень много детергентов, пригодных для очистки интегральных мембранных белков. В принципе нужно пытаться найти такой детергент, который не нарушал бы вторичную и третичную структуры мембранных белков, а лишь замещал бы большинство или все мембранные липиды, контактирующие с гидрофобными участками белковой молекулы. Конечной целью солюбилизации является встраивание белка в детергентиую мицеллу; последующая стратегия очистки состоит в разделении таких белково-детергентных комплексов.

Первая проблема - это подбор оптимальных условий солюбили-зации изучаемого белка. Детергенты, денатурирующие белки, не подходят для решения такой деликатной задачи. С другой стороны, многие детергенты недостаточно эффективно разрушают мембраны и образуют белоксодержащие смешанные мицеллы. Такие детергенты могут быть либо слишком гидрофобными, либо слишком гидрофильными для эффективного смешивания с мембранными липидами и - при достаточно высокой их концентрации - для превращения бислоя в глобулярные смешанные мицеллы. Сначала надеялись, что выбор необходимого детергента удастся систематизировать с помощью одного параметра, называемого гидро-фильно-липофильным балансом. Этот параметр, изменяющийся от 1 до 20, используется при получении сурфактантов в качестве меры относительной гидрофобности. Действительно, получены некие корреляции, из которых следует, что значение ГЛБ детергента может использоваться для предсказания его поведения в биологических системах. Вообще говоря, можно сказать, что детергенты со значением ГЛБ в диапазоне от 12,5 до 14,5 являются наиболее эффективными растворителями интегральных мембранных белков. Однако впоследствии выяснилось, что поиск оптимальных детергентов для определенного мембранного белка требует учета многих факторов и всегда должен сопровождаться эмпирической проверкой. Необходимо учитывать следующее.

1.Максимальная солюбилизация исследуемого белка. Критерием является переход белка в супернатант после центрифугирования, при котором происходит осаждение мембраны.

2.Солюбилизация белка в нужной форме. Обычно речь идет о сохранении его ферментативной активности, но иногда используются определенные спектральные характеристики или наличие конкретных белковых ассоциатов. Кроме того, необходимым условием является стабильность белка после солюбилизации. В некоторых случаях для поддержания биохимической активности вместе с детергентом добавляют экзогенные фосфолипиды. В качестве примера можно привести получение лактозопермеазы Е. coliи белка натриевого канала. Иногда для стабилизации белка после солюбилизации добавляют глицерол или другой полиол. Имеет смысл использовать также ингибиторы протеаз и проводить солюбилизацию в условиях, сводящих к минимуму вероятность их протеолитического расщепления.

3.Возможность использования детергента в данной методике. Необходимо прежде всего учитывать заряд детергента, поведение при данном значении рН, ККМ и размер мицелл детергента. Последние свойства особенно важны. Детергенты с низкой ККМ, образующие крупные мицеллы, не удаляются при диализе или ультрафильтрации из-за слишком низкой концентрации мономеров детергента. С практической точки зрения это означает, что если концентрировать белок с помощью ультрафильтрации, то будет возрастать и концентрация детергента с низкой ККМ, а это может привести к денатурации белка. По этой причине многие исследователи предпочитают использовать детергенты с высокими ККМ, например октилглюкозид, соли желчных кислот или более современные цвиттерионные детергенты. Весьма ценными являются полистиреновые смолы, такие, как биобидз SM-2. Они избирательно связываются с детергентами типа тритон Х-100, удаляют их из раствора и позволяют обойтись вообще без диализа. Еще один фактор, который необходимо учитывать, - это поглощение света детергентом. Некоторые детергенты, например тритон Х-100, поглощают в ближней УФ-области, что делает невозможным определение концентрации белка по измерению оптической плотности при длине волны 280 нм.

С учетом всех этих факторов становится понятно, почему во многих случаях при выделении интегральных мембранных белков приходится использовать разные детергенты. Например, для солюбилизации можно применять тритон Х-100, а разделение с помощью ДЭАЭ-целлюлозы лучше проводить в присутствии октилглюкозида. Детергенты можно менять на стадии хроматографии, во время центрифугирования в градиенте плотности, а в некоторых случаях - с помощью диализа. Следует иметь в виду, что детергент, непригодный для солюбилизации определенного белка, может быть очень эффективным для сохранения белка в растворе после замены детергента. Очистку почти всегда следует проводить при избытке детергента в растворе, в противном случае равновесие будет сдвинуто в сторону агрегации мембранных белков, а не в сторону образования белково-детергентных комплексов. В некоторых случаях подобная агрегация может быть даже желательна, и последняя стадия очистки может состоять в удалении детергента. Но, как правило, при недостатке детергента происходят необратимое осаждение и потеря белка.

Необходимость поддержания концентрации детергента на определенном уровне создает дополнительнее трудности помимо тех, с которыми обычно сталкиваются при очистке белков; о некоторых из них мы уже говорили. Проблемы возникают и при использовании стандартного метода высаливания при высокой концентрации сульфата аммония: во многих случаях белок осаждается в комплексе с детергентом и липидом. Поскольку солевой раствор имеет высокую плотность, а детергент в агрегате - относительно низкую, то при центрифугировании преципитат будет оставаться на поверхности. Важно помнить, что очистке подвергаются белково-детергентные комплексы, нередко со значительным количеством связанного фосфолипида. Это сказывается на качестве разделения при хроматографировании, а также на результатах характеристики конечного прорастворимых белков, нужно определить число и молекулярную массу полипептидных субъединиц, их стехиометрию, размер и, возможно, форму молекулы, а также, если это необходимо, биохимическую активность.


Детергент 1

В табл. 1 и 2 перечислены наиболее широко используемые детергенты и указаны их свойства, важные для обсуждаемых нами вопросов. Эмпирически наиболее эффективными являются: 1) неионные детергенты (тритон Х-100, октилглюкозид); 2) соли желчных кислот (холат, дезоксихолат); 3) цвиттерионные детергенты (CHAPS, цвнттергент). Но выбор детергента, наиболее приемлемого для солюбилизации и очистки определенного мембранного фермента, по-прежнему осуществляется методом проб и ошибок.

ККМ, мМ Мол.масса 1 Размер А мнцеллы .грегационис число х Удельный объем, мл/г Ссылки
Долецилсульфат 1,33 288 24 500 85 0,864
натрия
Холат натрия " 3 408 2100 5 0,778 (612, 1383]
Дезоксихолат 0,91 392 23 000 55 0,771
натрия "
0,11 538 68 000 12 0,973
Тритои Х-100 2) 0,24 628 90 000 140 0,908
Твин 80 2) 0,012 1300 76 000 60 0,8%
Лаурилдиметил- 2,2 229 17 000 75 1,112 |612]
аминоксид
^-D-Октил- 25 293 8000 27 0,820
^-D-Лаурил- 0,16 510 50 000 98 0,820
мальтозид
CHAPS 8 615 6150 10 0,802
Цвиттергеит 3,6 335 - - 0,957

3. ХАРАКТЕРИСТИКА ОЧИЩЕННЫХ ИНТЕГРАЛЬНЫХ МЕМБРАННЫХ БЕЛКОВ

Характеристика очищенных мембранных белков, даже самых простых, может составлять определенные трудности. Как и в случае

3.1 МОЛЕКУЛЯРНАЯ МАССА СУБЪЕДИНИЦ

Электрофорез в полиакриламидном геле в присутствии додецил-сульфата натрия - это обычная методика, но в случае интегральных мембранных белков при ее применении возникают особые проблемы. В этом методе додецилсульфат связывается с полипептидными цепями, и комплексы белок-ДНС разделяются в полиакриламидном геле в соответствии с их стоксовыми радиусами, которые в большинстве случаев зависят от молекулярной массы. Молекулярную массу определяют, сравнивая электрофоретическую подвижность данного комплекса и известного стандарта. Однако связывание ДСН с неизвестным белком может качественно отличаться от связывания со стандартами, и тогда будет получен неправильный результат. Подобная ситуация наблюдается для интегральных мембранных белков с высоким содержанием неполярных аминокислотных остатков. С большинством растворимых белков ДСН образует комплексы в соотношении 1,4 г ДСН на 1 г белка, а с белками, содержащими большой процент неполярных остатков, может связываться больше детергента. Возникающий при этом дополнительный отрицательный заряд приводит к аномальному повышению электрофоретической подвижности, и определяемая молекулярная масса оказывается меньше, чем на самом деле. Возможна и другая ситуация. Связывающийся с ДСН мембранный белок может находиться в не полностью развернутом состоянии, что тоже приведет к аномальному повышению электрофоретической подвижности из-за образования более компактного комплекса белок-ДСН. Все эти эффекты весьма существенны. Например, лактозопермеаза имеет кажущуюся мол. массу 33 ООО, если измерять ее с помощью электрофореза в ПААГ в присутствии ДСН; в действительности же, как показывают результаты генетического анализа, ее мол. масса равна 46 ООО. Во многих случаях удается оценить молекулярную массу более точно, если построить график Фергюсона, представляющий собой зависимость электрофоретической подвижности от содержания акриламида как для стандартных белков, так и для исследуемого белка. Этот график зависит от радиуса Стокса и в меньшей степени - от заряда комплекса. Например, по результатам электрофореза в 12%-ном акриламидном геле одна из субъединиц цитохромно- г о комплекса Е. coliимеет кажущуюся мол. массу 28 ООО, а из графика Фергюсона получается величина 43 ООО, что совпадает с мол. массой, рассчитанной по данным о секвенировании соответствующей ДНК.

Еще одна проблема - возможное наличие четвертичной структуры. Некоторые мембранные белки агрегируют даже в присутствии ДСН. Например, гликофорин А или белок оболочки бактериофага М13 при электрофорезе в полиакриламидных гелях с ДСН находятся в основном в виде димеров. Иногда агрегация еще более усиливается при нагревании смеси белок-ДСН. Такая картина наблюдается, например, для субъединиц как митохондри-альной, так и бактериальной терминальных оксидаз. Чтобы оценить способность белка к необратимой агрегации, следует провести сравнительный анализ результатов электрофореза в полиакрила-мидном геле с ДСН для прогретых и непрогретых проб. Сходная проблема иногда возникает из-за присутствия детергента, использованного при очистке мембранного белка. Этот детергент необходимо удалить и заменить на ДСН, поскольку в некоторых случаях наблюдается четкая зависимость электрофоретической подвижности от присутствия детергента, с помощью которого солюбилизнровали фермент.

Итак, есть основания думать, что оценка молекулярной массы субъединиц сильно неполярных интегральных мембранных белков, определенная с помощью электрофореза в ПААГ с ДСН, может оказаться неверной. К несчастью, простая альтернатива этому методу отсутствует, и правильную величину часто получают либо по данным о полной первичной последовательности, либо с помощью точного гидродинамического анализа.

3.2 ОПРЕДЕЛЕНИЕ МОЛЕКУЛЯРНОЙ МАССЫ НАТИВНОГО БЕЛКА С ПОМОЩЬЮ ГИДРОДИНАМИЧЕСКИХ МЕТОДОВ

Применение этих методов для мембранных белков может быть сопряжено с большими трудностями, вызванными связыванием детергента. Чтобы оценить это в полной мере, рассмотрим вначале простой растворимый белок, для которого установлена мол. масса субъединиц с помощью электрофореза в ПААГ с ДСН и необходимо узнать, чем он является в неденатурированной, активной форме - мономером, димером или олигомером более высокого порядка. Для определения молекулярной массы белков часто используется гель-фильтрация, включающая сравнение со стандартными белками; здесь возникают проблемы, связанные с тем, что все стандартные белки имеют глобулярную форму, а исследуемый белок может быть не глобулярным, а слегка удлиненным. Такой белок с мол. массой 50 000 может элюировать со скоростью, соответствующей мол. мае

се 100 ООО. В связи с этим колонка для гель-фильтрации должна быть прокалибрована в соответствии со значениями радиуса Стокса, т. е. с размерами «эквивалентной гидродинамической сферы», а кроме того, параллельно необходимо использовать какой-либо другой метод. Обычно измеряют скорость седиментации с помощью либо аналитического ультрацентрнфугирования, либо центрифугирования в градиенте плотности сахарозы. Коэффициент седиментации равен

где м - молекулярная масса белка,

v - его парциальный удельный объем, ij - вязкость раствора, б - плотность раствора.

Поскольку е и Ч известны, aRcможно определить с помощью гель-фильтрации, остаются только две неизвестные величины - v и м. Для водорастворимых белков v можно вычислить исходя из аминокислотного состава или непосредственно измерить либо просто принять равным 0,72-0,75 мл/г. Таким образом, измерив S 0 , можно найти м.

Рассмотрим теперь ситуацию с мембранным белком. Здесь возникают дополнительные проблемы, поскольку гидродинамическая частица - это белково-детергентный комплекс, поэтому м и v в данном случае являются молекулярной массой и удельным объемом комплекса, М к и К,. К сожалению, К, нельзя оценить, не зная ничего о составе комплекса. В этом случае для нахождения молекулярной массы белка используют два метода.

1.Прямо измеряют количество связанного детергента на 1 г белка. Для этого используют спектральные методы или радиоактивно меченный детергент, а для выделения комплексов применяют различные методы, например гель-фильтрацию. Установив относительное содержание белка и детергента в комплексе, значение К, получают как средневзвешенное соответствующих величин для чистого белка и чистого детергента. После этого без труда находят м„ а поскольку соотношение между белком и детергентом в комплексе известно, находят молекулярную массу белка.

2.Измеряют S 0 в средах с разными значениями плотности раствора д. Такие среды обычно получают, используя смеси НгО и D2O. Из графика зависимости S° от qнаходят как Л/„ так и v t . При этом предполагается, что К, - это средневзвешенное соответствующих величин для чистого белка и чистого детергента.


ОцеНИВ Квело* и взяв детергент из таблиц, получают молекулярную массу белковой составляющей м,.

Для построения графика зависимости 5° от qпроводят аналитическое центрифугирование. Можно проводить центрифугирование и в градиенте плотности сахарозы, используя смеси Н2О и D2O, но анализ результатов в этом случае гораздо сложнее, хотя принципиально не отличается от предыдущего случая.

Альтернативный способ определения молекулярной массы нативной формы мембранного белка состоит в равновесном ультрацентрифугировании. Распределение вещества в состоянии равновесия таково, что наклон графика зависимости логарифма концентрации от г 2 равен

где г - расстояние от центра ротора до данной точки в центрифужной пробирке, W- частота вращения.

Если величина У известна или ее легко оценить, как для большинства растворимых белков, эта задача решается достаточно просто. Что касается мембранных белков, то в этом случае определяют на-

Таблица 3. Связывание детергентов с некоторыми мембранными белками

клон указанной прямой при разных значениях q, получаемых смешиванием НгО и D2O. Как и ранее, одновременно находят М к и К, и далее определяют молекулярную массу белка.

Если в комплексе присутствует третий компонент, возникают дополнительные проблемы. В любом случае все описанные процедуры весьма сложны и могут давать ошибочные результаты. Количество детергента, связанного с очищенными интегральными мембранными белками, может быть весьма существенным - от 0,3 до 1,5 от массы белка, и даже небольшие ошибки в этой величине приведут к значительному искажению молекулярной массы белка. В табл. 3.3 приведены данные о количестве детергентов, присутствующих в некоторых белковых препаратах. Заметим, что растворимые белки с этими детергентами не связываются; это опять свидетельствует о том, что за связывание с детергентом ответственна именно неполярная часть белка, обычно контактирующая с мембранными липидами.

3.3 МЕТОД РАДИАЦИОННОЙ ИНАКТИВАЦИИ

Метод радиационной инактивации для определения размера мишени все чаще применяется при исследовании мембранных белков. Изучать можно как очищенные белки, так и неочищенные препараты, в том числе интактные биомембраны. Суть метода состоит в определении доли белковых молекул, получающих повреждения при облучении. Для этого используют ферментативные методы связывания гормонов или других лигандов или спектральные методы. Процедура состоит в следующем. Образец, обычно замороженный, подвергают высокоэнергетическому облучению. Через разные промежутки времени отбирают пробы, размораживают их и проводят измерения. Повреждения белка под действием излучения выявляют, например, с помощью электрофореза в ПААГ с ДСН. Как показывает опыт, некоторые субъединицы полностью утрачивают биологическую активность при внесении радиационного повреждения в любое место полипептидной цепи. Ключевым моментом является то, что, чем крупнее белковая молекула, тем больше вероятность ее повреждения и, следовательно, вероятность инактивации. Эта вероятность зависит не от формы молекулы, а от ее массы. Обычно для того, чтобы облегчить интерпретацию результатов, параллельно облучают белок с известной молекулярной массой. Если исследуемый белок содержит более одной субъединицы, возникают определенные трудности при анализе результатов. Повреждение одной субъединицы не обязательно сопровождается разрывом ковалентных связей в других субъединицах. Поэтому для ферментов, состоящих из разных субъединиц, обладающих неодинаковыми активностями, могут быть получены разные размеры мишени в зависимости от метода определения степени инактивации.

Примечательной особенностью метода является то, что его можно использовать для изучения интегральных мембранных белков insitu. Возникающие при этом артефакты и проблемы рассмотрены в работе. Одна из очевидных проблем - необходимость использования высокоэнергетического излучения. В связи с этим большинство работ приходится проводить в сотрудничестве с лабораториями, в которых имеются соответствующие источники и освоены специальные методы анализа.


3.4 СПЕКТРАЛЬНЫЕ МЕТОДЫ И ВТОРИЧНАЯ СТРУКТУРА

Для определения содержания а-спиралей и /3-слоев в мембранных белках используют несколько методов. В отсутствие трехмерной организации на их основе можно попытаться построить соответствующие модели. Чаще всего используется метод кругового дихроизма. Все более широкое применение находят инфракрасная и рамановская спектроскопия, а также ЯМР.

1. Метод кругового дихроизма основан на измерении разности поглощения лево- и правополяризованного света; эта оптическая активность является мерой хиральности молекул, или мерой их асимметрии. В дальней ультрафиолетовой области КД определяется в основном поглощением амидов карбонильных групп полипептидного остова. При наличии участков вторичной структуры, например а-спиралей, спектр КД имеет вполне определенные особенности, связанные с особенностями электронного окружения амидиых групп в этих структурах. Анализизуя спектр КД белков, его обычно представляют как сумму компоиеитов, отвечающих поглощению разных участков белковой молекулы: а-спиралей, /3-слоев и случайных клубков. Определив тем или иным способом спектры каждой из этих структур, производят их суммирование, подбирая соответствующие коэффициенты таким образом, чтобы было достигнуто наилучшее соответствие измеренному спектру. Подобранные весовые коэффициенты представляют собой ту долю, которая приходится в молекуле на каждый из типов вторичной структуры.

Эти методы были разработаны для растворимых белков, но нет никаких оснований сомневаться, что их можно с успехом применять и для мембранных белков. Скорее всего у последних имеются участки с такими же типами вторичной структуры, как и у растворимых белков, и при их изучении возникнут такие же трудности. Некоторые белки можно изучать insitu, используя суспензии мембран. Примерами такого рода являются бактериородопсин из пурпурной мембраны Halobacteriumhalobiumи Са 2 + -АТРаза из мембраны саркоплазмати-ческого ретикулума. Очищенные мембранные белки можно исследовать с помощью КД и в присутствии детергентов, если поглощение последних в дальней УФ-области не слишком велико, или в составе реконструированных везикул. Здесь возникают две проблемы: 1) дифференциальное светорассеяние, когда размер мембранных частиц гораздо больше длины волны света; 2) выравнивание поглощения из-за концентрирования белка в мембранах или везикулах, т. е. из-за негомогенности его распределения в растворе. Эти артефакты могут быть весьма существенными, однако их можно учесть с помощью соответствующих методов.

К сожалению, для внутренних мембранных белков отсутствуют структурные данные высокого разрешения, поэтому точная интерпретация спектров КД невозможна. За исключением нескольких случаев, разные спектральные методы не использовались для изучения одного и того же белка и количественное сравнение результатов не проводилось. Интересно, что для бактериородопсина, который исследовали методами КД, ИК и ЯМР, во всех трех случаях были получены одинаковые результаты, свидетельствующие о значительном содержании в этом белке 3-слоев. Тем не менее у каждого метода имеются существенные недостатки. Так, данные о высоком содержании в бактериородопсине Д-слоев в значительной мере зависят от способа учета оптических артефактов. Судя по данным электронно-микроскопической реконструкции, харатеризующимся относительно низким разрешением, в бактериородопсине 80% приходится на долю а-спира-лей, а 0-слои отсутствуют совсем. Чтобы понять причину этих несоответствий, необходимо провести структурный анализ белка с атомным разрешением. Имеются еще два белка, пронизывающие мембрану, с высоким содержанием, и а-токсин Staphylococcusaureus. Оба этих белка участвуют в образовании пор в бислое.

2. Инфракрасная спектроскопия и спектроскопия комбинационного рассеяния. Эти методы не только позволяют получить сведения о конформации мембранных липидов, но и могут использоваться для исследования вторичной структуры белков. Колебательный спектр полипептидного остова зависит от типа вторичной структуры и дает информацию о содержании в молекуле а- и /3-структур. Этими методами можно исследовать высушенные на воздухе пленки, водные суспензии мембран, а также очищенные белки как в присутствии детергента, так и в составе реконструированных везикул. Например, по данным ИК-спектроскопии с преобразованием Фурье комплекс Са 2 + -АТРазы в мембране состоит в основном из а-спиральных участков и участков, имеющих кон-формацию статистического клубка, а гидрофобный белок миелин в реконструированных везикулах имеет как а-, так и /3-участки.

3. ЯМР-спектроскопия также может использоваться для изучения мембранных белков. Однако возможности метода в этом случае ограничены, что связано главным образом с относительно медленными движениями интегральных мембранных белков insitu и в комплексах с детергентом. Поэтому такой мощный метод, как двумерный ЯМР, который может дать детальную картину конформацион-ного состояния сравнительно небольших белков в растворе, пока непригоден для изучения мембранных белков. Более приемлем метод ЯМР твердых образцов. Большими возможностями обладают методы 2 Н- и |3 С-ЯМР, хотя до сих пор они применялись не очень широко. Получены данные об усредненной конформации остова и динамике боковых цепей. Следует отметить, что методы ЯМР твердого состояния не только не используются широко, но в большинстве случаев их и нельзя использовать. Тем не менее в тех редких ситуациях, когда их применение оказывается возможным, они являются очень ценными.

3.5 ФЕРМЕНТАТИВНАЯ АКТИВНОСТЬ

Одним из наиболее важных методов характеристики очищенных мембранных белков несомненно является определение биохимической активности. При этом используются в основном такие же критерии, как и для растворимых белков, но могут возникать и свои трудности. Первая из них связана с тем, что биохимическая активность мембранных белков часто очень сильно зависит от связывания с белком липидов и детергентов. Потеря активности может быть как обратимой, так и необратимой. Целесообразно иметь какую-то оценку удельной активности исследуемого белка invivo или в составе мембран до солюбилизации. Избыток детергента может оказывать ингибирующий эффект, например за счет разбавления неполярных субстратов в популяции мицелл и уменьшения ферментативной активности. Измеряя активность любого мембранного белка, необходимо иметь в виду, что insitu он находится в окружении липидов, обеспечивающих оптимальную активность. Вторая проблема связана с белками, обладающими «трансбислойной» активностью; примерами могут служить белки, образующие каналы, и транспортные белки. В этих случаях необходимо учитывать перемещение растворенных веществ из одного компартмента в другой.

3.6 ЧЕТВЕРТИЧНАЯ СТРУКТУРА И ХИМИЧЕСКОЕ СШИВАНИЕ

Многие мембранные ферменты представляют собой комплексы, состоящие из нескольких субъединиц. В качестве примера можно привести Н + -АТРазу, Na + /К + -АТРазу, митохондриальные комплексы электронного транспорта и фотосинтетические реакционные центры. Некоторые интегральные мембранные белки прочно связаны с растворимыми белками с помощью нековалентных взаимодействий. В Е. coliFo-компонент, содержащий по данным электрофореза в ПААГ-ДСН три типа субъединиц, образует протонный канал, aFi, состоящий из пяти типов субъединиц, содержит активный центр, участвующий в гидролизе АТР. Для таких белков очень важно определить характер субъединиц, стехиометрию комплекса и ближайшие взаимодействия его компонентов. Это весьма непростая задача даже тогда, когда белковый комплекс уже изолирован. Возникающие здесь проблемы по существу не отличаются от таковых для растворимых белковых комплексов, но имеются и свои дополнительные сложности.

Прежде всего следует иметь в виду, что взаимодействие между субъеднницами очень сильно зависит от типа липидов и детергентов, с которыми связаны белки. Например, сукцинатде-гидрогеназа Е. coliпри солюбилизации ее с помощью луброла РХ представляется состоящей из четырех субъединиц, а при солюбилизации большинством других детергентов, в том числе тритоном Х-100, - только из двух. Известно, что оперон sdhкодирует все четыре полипептида, а форма из двух субъединиц имеет аномальный спектр ЭПР. Таким образом, ясно, что invivo фермент состоит из четырех субъединиц. Однако сукцинатдегидрогеназной активностью обладают обе формы, поэтому используемые биохимические критерии важны для заключения, была ли солюбилизирована правильная форма.

Еще одна проблема связана с тем, что в бислое мембранные белки могут образовывать комплексы из-за высокой их локальной концентрации. При солюбилизации же независимо от используемого детергента может произойти разбавление мембранных белков и их разъединение. По закону действующих масс это приведет к диссоциации комплексов, в которых взаимодействие между компонентами не очень сильное. Часто бывает трудно определить, какой комплекс образуется insitu, а какой - прн солюбилизации и очистке. Подобные проблемы возникают при исследовании многих сложных систем, например системы /3-адренергетический рецептор-адеиилатци-клаза, цепи электронного транспорта у митохондрий, системы мик-Росомных цитохромов Р450 и b$.

Для изучения стехиометрии субъединиц и их ассоциации в очищенном комплексе используется всего несколько методов: 1) химичес кое сшивание; 2) количественный анализ N-концевых аминокислот; 3) определение отношения массы субъединиц в ДСН-полиакриламидных гелях путем определения интенсивности окрашивания, с помощью радиоавтографии или иммуноблоттинга. Каждый метод имеет свои ограничения, но все они использовались на практике. Например, стехиометрию пяти субъединиц никотинового ацетил-холииового рецептора определяли с помощью количественного анализа N-коицевых аминокислот, а трех субъедиииц Fo-компоиента Н + -АТРазы Е. coli- с помощью разделения в ДСН-полиакриламидных гелях. Заметим, что кумасси бриллиантовый синий, обычно используемый для окрашивания белков после разделения в ПААГ-ДСН, связывается предпочтительнее с белками, содержащими основные аминокислотные остатки, и существуют примеры сильно неполярных внутренних мембранных белков, которые лишь едва окрашиваются.

Химическое сшивание применялось для определения ближних взаимодействий как в очищенных белковых комплексах, так и в комплексах insitu. Для анализа ближних взаимодействий в мембранных белках используется несколько специфических гидрофобных сшивающих агентов. Некоторые из них представлены в табл. 3.4. Применяемые методы не отличаются от таковых для растворимых систем. Продукты сшивания обычно анализируют с помощью электрофореза в ПААГ, часто с использованием расщепляемых сшивающих агентов, что позволяет анализировать полипептиды. Применяют также антитела к индивидуальным полипептидам для иммуноблоттинга после электрофореза в ПААГ-ДСН, чтобы идентифицировать компоненты каждого из образовавшихся продуктов. Можно было бы предположить, что при относительно большом времени жизни реагентов белки в биомембранах будут сшиваться в результате простой диффузии в бислое. Однако, по данным нескольких работ, это не так: продукты сшивания представляют собой специфические белковые ассоциаты, а не случайные образования. Так, в фотосинтетической мембране Rhodobactercapsulataобразуются сшивки лишь между субъединицами компонентов реакционного центра, а также между реакционным центром и «антенным» комплексом В870, участвующим в передаче энергии реакционному центру.

И наконец, отметим, что химическое сшивание часто использовалось для идентификации интегральных мембранных белков, которые связываются с известными растворимыми компонентами. В качестве примера можно привести сшивание 1) а- и b-субъединиц Fo-kom-понента Н + -АТРазы с /3-субъединицей растворимого компонента Fi; 2) цитохрома с с субъединицами митохондриальной цитохром с-оксидазы; 3) пептидных гормонов с рецепторами гормонов.


Таблица 4. Некоторые сшивающие реагенты, использовавшиеся для определения четвертичной структуры мембранных белков "

Если основная роль липидов в составе мемб­ран заключается в стабилизации бислоя, то бел­ки отвечают за функциональную активность мембран. Одни из них обеспечивают транспорт определённых молекул и ионов, другие явля­ются ферментами, третьи участвуют в связыва­нии цитоскелета с внеклеточным матриксом или служат рецепторами для гормонов, медиаторов,

эйкозаноидов, липопротеинов, оксида азота (N0). На долю белков приходится от 30 до 70% массы мембран. Белки определяют особеннос­ти функционирования каждой мембраны.

Особенности строения

и локализации белков в мембранах

Мембранные белки, контактирующие с гид­рофобной частью липидного бислоя, должны быть амфифильными. Те участки белка, кото­рые взаимодействуют с углеводородными цепя­ми жирных кислот, содержат преимущественно неполярные аминокислоты. Участки белка, на­ходящиеся в области полярных «головок», обо­гащены гидрофильными аминокислотными ос­татками.

Локализация белков в мембранах. Трансмембранные белки, например: 1 - гликофорин А; 2 - рецептор адреналина. Поверхностные белки: 3 - белки, связанные с интегральными белками, например, фермент сукцинатдегидрогеназа; 4 - белки, присоединенные к полярным «головкам» липидного слоя, например, протеинкинаэа С; 5 - бел­ки, -заякоренные» в мембране с помощью короткого гидрофобного концевого домена, например, цитохрои b 5 ;6 - «заякоренные» белки, ковалентно соединённые с пипидом мембраны (например, фермент щелочная фосфатаза).

Белки мембран различаются по своему поло­жению в мембране. Они могут глу­боко проникать в липидный бислой или даже пронизывать его - интегральные белки, либо разными способами прикрепляться к мембра­не - поверхностные белки.

Поверхностные белки

Поверхностные белки часто прикрепляются к мембране, взаимодействуя с интегральными

белками или поверхностными участками липидного слоя.

Белки, образующие комплексы с интеграль­ными белками мембраны

Ряд пищеварительных ферментов, участвую­щих в гидролизе крахмала и белков, прикреп­ляется к интегральным белкам мембран микро­ворсинок кишечника.

Примерами таких комплексов могут быть сахараза-изомальтаза и мальтаза-гликоамилаза.

Белки, связанные с полярными «головками» липидов мембран

Полярные или заряженные домены белковой молекулы могут взаимодействовать с полярны­ми «головками» липидов, образуя ионные и во­дородные связи. Кроме того, множество раство­римых в цитозоле белков при определённых условиях могут связываться с поверхностью мембраны на непродолжительное время. Иног­да связывание белка - необходимое условие проявления ферментативной активности. К та­ким белкам, например, относят протеинкиназу С, факторы свёртывания крови.

Закрепление с помощью мембранного «якоря»

«Якорем» может быть неполярный домен белка, построенный из аминокислот с гидро-

фобными радикалами. Примером такого белка может служить цитохром b 5 мембраны ЭР. Этот белок участвует в окислительно-восстанови­тельных реакциях, как переносчик электронов.

Роль мембранного «якоря» может выполнять также ковалентно связанный с белком остаток жирной кислоты (миристиновой - С 14 или пальмитиновой - С 16). Белки, связанные с жирными кислотами, локализованы в основном на внутренней поверхности плазматической мембраны. Миристиновая кислота присоединя­ется к N-концевому глицину с образованием амидной связи. Пальмитиновая кислота обра­зует тиоэфирную связь с цистеином или слож-ноэфирную с остатками серина и треонина.

Небольшая группа белков может взаимодей­ствовать с наружной поверхностью клетки с помощью ковалентно присоединённого к С-концу белка фосфатидилинозитолгликана. Этот «якорь» - часто единственное связующее зве­но между белком и мембраной, поэтому при действии фосфолипазы С этот белок отделяет­ся от мембраны.

Трансмембранные (интегральные) белки

Некоторые из трансмембранных белков про­низывают мембрану один раз (гликофорин), дру­гие имеют несколько участков (доменов), пос­ледовательно пересекающих бислой.

Трансмембранные домены, пронизывающие бислой, имеют конформацию α -спирали. Поляр­ные остатки аминокислот обращены внутрь глобулы, а неполярные контактируют с мембранны­ми липидами. Такие белки называют «вывернуты­ми» по сравнению с растворимыми в воде белка­ми, в которых большинство гидрофобных остатков аминокислот спрятано внутрь, а гидрофильные располагаются на поверхности.

Радикалы заряженных аминокислот в соста­ве этих доменов лишены заряда и протониро-ваны (-СООН) или депротонированы (-NH 2).

Гликозилированные белки

Поверхностные белки или домены интеграль­ных белков, расположенные на наружной по­верхности всех мембран, почти всегда гликози-лированы. Олигосахаридные Остатки могут быть присоединены через амидную группу аспараги-на или гидроксильные группы серина и треонина.

Олигосахаридные остатки защищают белок от протеолиза, участвуют в узнавании лигандов или адгезии.

Латеральная диффузия белков

Некоторые мембранные белки перемещают­ся вдоль бислоя (латеральная диффузия) или по­ворачиваются вокруг оси, перпендикулярно его поверхности.

Латеральная диффузия интегральных белков в мембране ограничена, это связано с их боль­шими размерами, взаимодействием с другими мембранными белками, элементами цитоскелета или внеклеточного матрикса.

Белки мембран не совершают перемещений с одной стороны мембраны на другую («флип-флоп» перескоки), подобно фосфолипидам.

Доля белка в общей массе мембраны может колебаться в очень широких пределах – от 18% в миелине до 75% в митохондриальной мембране.

По расположению в мембране белки можно разделить на: интегральные и периферические .

Интегральные белки являются, как правило, гидрофобными и легко встраиваются в липидный бислой.

Взаимодействие такого белка с мембраной происходит в несколько стадий. Сначала белок адсорбируется на поверхности бислоя, изменяет свою конформацию , устанавливая гидрофобный контакт с мембраной. Затем происходит внедрение белка в бислой. Глубина внедрения зависит от силы гидрофобного взаимодействия и соотношения гидрофобных и гидрофильных участков на поверхности белковой глобулы. Гидрофильные участки белка взаимодействуют с примембранными слоями по одну или обе стороны мембраны. Фиксация белковой глобулы в мембране происходит благодаря электростатическим и гидрофобным взаимодействиям. Углеводная часть белковых молекул (если она имеется) выступает наружу. Интегральные белки в силу тесной связи с бислоем оказывают на него существенное воздействие: конформационные перестройки белка приводят к изменению состояния липидов, так называемой деформации бислоя.

Периферические белки обладают меньшей глубиной проникновения в липидный бислой, и, соответственно, более слабо взаимодействуют с липидами мембраны, оказывая, на них гораздо меньшее воздействие, чем интегральные.

По характеру взаимодействия с мембраной белки делятся на монотопические, битопические, политопические :

монотопические белки взаимодействуют с поверхностью мембраны (моно – одним из слоев липидов);

битопические пронизывают мембрану насквозь (би – двумя слоями липидов);

политопические пронизывают мембрану несколько раз (поли- многократное взаимодействие с липидами).

Понятно, что первые относятся к периферическим белкам, а вторые и третьи к интегральным.

Белки мембран можно так же классифицировать по выполняемой ими функции. В связи с этим выделяют структурные белки:

· белки – ферменты;

· белки – рецепторы;

· транспортные белки.

Особую группу составляют белки цитоскелета клетки. Строго говоря, эти белки не являются компонентами мембраны, примыкая к ней с цитоплазматической стороны. Белки цитоскелета входят в состав всех его компонентов: миофиламенты содержат молекулы белка актина; в состав микротрубочек входит белок тубулин, промежуточные филаменты также содерждат более полиморфный белковый комплекс. Цитоскелет не только обеспечивают эластичность мембраны, противостоят изменениям объема клетки, но, по-видимому, участвует в и различных внутри- и внеклеточных механизмах регуляции.

Как правило, именно белки ответственны за функциональную активность мембран.

К таким белкам относятся разнообразные ферменты, транспортные белки, рецепторы, каналы, белки, образующие поры (аквапорины), то есть разнообразные белковые структуры, которые обеспечивают уникальность функций каждой мембраны.

Мембранные белки по биологической роли можно разделить на три группы:

I – белки-ферменты, обладающие каталитической активностью,

II – рецепторные белки, специфически связывающие те или иные вещества,

III – структурные белки.

Белки-ферменты

Наиболее распространены среди всех мембранных белков. В их число входят как интегральные (мембранные АТФазы), так и периферические (ацетилхолинэстераза, кислая и щелочная фосфатазы, РНКаза) белки.

Ферменты – большие молекулы, в то время как размеры молекул веществ (субстратов), вступающих в ферментативные реакции, обычно в тысячи раз меньше. Фермент взаимодействует с субстратом небольшим участком своей поверхности – активным центром. Специфичность фермента всегда определяется тем, насколько поверхность его активного центра соответствует поверхности субстрата. Этот принцип структурного соответствия повсеместно используется и в работе белков клеточных мембран. В дополнение к этому надо учесть, что конформация внедряющихся в мембрану белков зависит от мембранного бислоя, так что и их ферментативная активность контролируется мембранными липидами. Этот контроль может реализоваться благодаря как влиянию на сродство к субстратам или на их доступность, так и воздействию на длительность жизни (прочность) белковых ассоциатов мембранных ферментов, образующихся в клеточной мембране.

Ферменты входят в состав как плазматических, так и внутриклеточных мембран. Например, на наружной мембране эпителиальных клеток, выстилающих пищеварительные органы, имеются ферменты, осуществляющие расщепление питательных веществ еще до того, как они попадут внутрь клетки (этот процесс, открытый отечественным физиологом А.М. Уголевым носит название «мембранное пищеварение»). Наружная мембрана клеток печени содержит более 20 различных ферментов.

Мембранные ферменты нуждаются в контакте с окружающими их липидами. Когда их извлекают из липидного окружения (например, когда липиды экстрагируются из мембраны неполярными растворителями), работа мембранных ферментов нарушается (меняются особенности кинетики или характера влияния посторонних веществ или же вовсе прекращается). Активность таких мембранных ферментов удается частично восстановить, если к ним добавить липидные мицеллы.

Анализ природы липидов, активирующих мембранные ферменты, демонстрирует отсутствие строгой специфичности - определяющим является гидрофильно-липофильный коэффициент липидной смеси. В ряде случаев активировать делипидированный фермент удается даже детергентом. Однако такой реактивированный фермент теряет способность воспринимать регулирующие сигналы извне, которые управляли его работой в «живой» мембране.

Активирующее действие липидов на мембранные ферменты может быть, по меньшей мере, двояким. Во-первых, в присутствии липидов может меняться форма молекулы мембранного фермента, так что его активный центр становится доступным для субстрата. Во-вторых, липиды могут играть роль организатора ансамбля или конвейера, состоящего из многих ферментов.

Молекулы мембранных ферментов содержат большие неполярные гидрофобные участки. Поэтому в водной среде они агрегируют, из-за чего большая часть активных центров маскируется. В присутствии липидов мембранные ферменты организуются в ансамбли, окруженные аннулярными липидными молекулами, и их ферментативная активность может проявиться в полной мере. Для нормальной работы мембранных ферментов существенно, чтобы окружающие их липиды находились в жидком агрегатном состоянии.

Рецепторные белки

Рецепторными называют белки, специфически связывающие те или иные низкомолекулярные вещества. При связывании специфических лигандов рецепторные белки обратимо меняют свою форму. Эти изменения запускают внутри клетки ответные химические реакции. Таким способом клетка воспринимает различные сигналы, поступающие из внешней среды, и отвечает на них .

Белки-рецепторы и белки, определяющие иммунную реакцию клетки, – антигены, также могут быть как интегральными, так и периферическими компонентами мембраны.

Часто рецепторы входят в состав более сложных мембранных комплексов, содержащих белки-исполнители. Например, холинорецептор воспринимает сигнал от нейромедиатора и передает его на белок-каналообразователь. Эта реакция открывает проницаемость мембраны для ионов натрия и калия и формирует возбуждающий потенциал.

ЛЕКЦИЯ

ТЕМА:” Введение в гистологию. Плазматическая мембрана, строение и функции. Структуры, формируемые плазматической мембраной”

Гистология в дословном переводе - это наука о тканях, однако это понятие не вмещает того действительно большого обьема материала, который освещает эта понастоящему медицинская дисциплина. Курс гистологии начинается с изучения цитологии не столько на светооптическом, сколько на молекулярном уровне, который в современной медицине логически вошел в этиологию и патогенез целого ряда заболеваний. Гистология – это и отдельные разделы из курса эмбриологии, не всей конечно, а той ее части, которая затрагивает вопрос закладки и дифференцировки тканевых зачатков. И,наконец, гистология – это большой раздел частной гистологии, то есть, раздел, изучающий строение и функции различных органов. Перечисленные разделы курса гистологии не оставляют сомнения в том, что изучение нашей дисциплины следует проводить в аспекте сохранения единства клеточного, тканевого, органного и системного уровней организации

Мы начнем гистологию с изучения эукариотической клетки, являющейся самой простой системой, наделенной жизнью. При исследовании клетки в световом микроскопе мы получаем информацию о ее размере, форме, и эта информация связана с наличием у клеток ограниченных мембраной границ. С развитием электронной микроскопии (ЭМ) наши представления о мембране, как о четко ограниченной линии раздела между клеткой и окружающей средой изменились, ибо оказалось,что на поверхности клетки имеется сложная структура, состоящая из следующих 3-х компонентов:

1. Надмембранный компонент (гликокаликс) (5-100 нм)

2. Плазматическая мембрана (8-10 нм)

3. Подмембранный компонент (зона вариации белков цитоскелета)

При этом 1 и 3 компоненты вариабельны и зависят от типа клеток, наиболее статичным представляется строение плазматической мембраны, которую мы и рассмотрим.

Изучение плазмолеммы в условиях ЭМ привело к заключению об однотипности ее структурной организации, при которой она имеет вид триламинарной линии, где внутренний и наружный слои электронноплотные, а расположенный между ними – более широкий слой представляется электроннопрозрачным. Такой тип структурной организации мембраны свидетельствует об ее химической гетерогенности. Не касаясь дискуссии по этому вопросу, оговорим, что плазмолемма состоит из трех типов веществ: липидов, белков и углеводов.

Липиды , входящие в состав мембран, обладают амфифильными свойствами за счет присутствия в их составе как гидрофильных, так и гидрофобных групп.

Амфипатический характер липидов мембраны способствует образованию липидного бислоя. При этом в фосфолипидах мембраны выделяют два домена: а) фосфатная – голова молекулы, химические свойства этого домена определяют его растворимость в воде и его называют гидрофильным

б) ацильные цепи, представляющие собой этерифицированные жирные кислоты – это гидрофобный домен.

Типы мембранных липидов. 1. Основным классом липидов биологических мембран являются фосфо(глицериды) (фосфолипиды), они формируют каркас

биологической мембраны (рис. 1).

Биомембраны – это двойной слой амфифильных липидов (липидный бислой). В водной среде такие амфифильные молекулы самопроизвольно образуют бислой, в котором гидрофобные части молекул ориентированы друг к другу, а гидрофильные к воде (рис. 2).

В состав мембран входят липиды следующих типов:

1. Фосфолипиды

2.Сфинголипиды “головки” + 2 гидрофобных “хвоста”

3.Гликолипиды

Холестерин (ХЛ) – находится в мембране в основном в срединной зоне бислоя, он амфифилен и гидрофобный (за исключением одной гидроксигруппы). Липидный состав влияет на свойства мембран: отношение белок/липиды близок 1:1, однако миелиновые оболочки обогащены липидами, а внутренние мембраны – белками.

Способы упаковки амфифильных липидов : 1. Бислои (липидная мембрана), 2.Липосомы - это пузырек с двумя слоями липидов, при этом как внутренняя, так и наружная поверхности являются полярны. 3. Мицеллы – третий вариант организации амфифильных липидов – пузырек, стенка которого образована одним слоем липидов, при этом их гидрофобные концы обращены к центру мицеллы и их внутренняя среда является не водной, агидрофобной.

Наиболее распространенной формой упаковки молекул липидов является образование ими плоского бислоя мембран. Липосомы и мицеллы – это скорые транспортные формы, обеспечивающие перенос веществ в клетку и из нее. В медицине липосомы используют для переноса водорастворимых, а мицеллы – для переноса жирорастворимых веществ.

Белки мембраны:

1. Интегральные (включены в липидные слои)

2. Периферические

Интегральные (трансмембранные белки):

1. Монотопные – (например, гликофорин. Они пересекают мембрану 1 раз), и являются рецепторами, при этом их наружный – внеклеточный домен – относится к распознающей части молекулы.

2. Политопные – многократно пронизывают мембрану – это тоже рецепторные белки, но они активизируют путь передачи сигнала внутрь клетки.

Мембранные белки, связанные с липидами.

4. Мембранные белки, связанные с углеводами.

Периферические белки – не погружены в липидный бислой и не соединены с ним ковалентно. Они удерживаются за счет ионных взаимодействий. Периферические белки ассоциированы с интегральными белками в мембране за счет взаимодействия - белок-белковые взаимодействия.

Пример этих белков:

1. Спектрин , который расположен на внутренней поверхности клетки

2. Фибронектин, локализован на наружной поверхности мембраны

Белки – обычно составляют до 50% массы мембраны. При этом

интегральные белки выполняют следующие функции:

а) белки ионных каналов

б) рецепторные белки

2. Периферические мембранные белки (фибриллярные, глобулярные) выполняют функции:

а) наружные (рецепторные и адгезионные белки)

б) внутренние – белки цитоскелета (спектрин, анкирин), белки системы вторых посредников.

Ионные каналы – это сформированные интегральными белками каналы, они формируют небольшую пору, через которую по электрохимическому градиенту проходят ионы. Наиболее известные каналы – это каналы для Nа, К, Са 2 , Сl.

Существуют и водные каналы – это аквопорины (эритроциты, почка, глаз).

Надмембранный компонент – гликокаликс, толщина 50 нм. Это углеводные участки гликопротеинов и гликолипидов, обеспечивающие отрицательный заряд. Под ЭМ – это рыхлый слой умеренной плотности, покрывающий наружную поверхность плазмолеммы. В состав гликокаликса помимо углеводных компонентов входят периферические мембранные белки (полуинтегральные). Функциональные участки их находятся в надмембранной зоне- это иммуноглобулины (рис. 4) .

Функция гликокаликса: 1. Играют рольрецепторов .

2. Межклеточное узнавание .

3. Межклеточные взаимодействия (адгезивные взаимодействия).

4. Рецепторы гистосовместимости.

5. Зона адсорбции ферментов (пристеночное пищеварение).

6. Рецепторы гормонов .

Подмембранный компонент или самая наружная зона цитоплазмы, обычно обладает относительной жесткостью и эта зона особенно богата филаментами (d 5-10 нм). Предполагают, что интегральные белки, входящие в состав клеточной мембраны, прямо или косвенно связаны с актиновыми филаментами, лежащими в подмембранной зоне. При этом экспериментально доказано, что при агрегации интегральных белков, находящийся в этой зоне актин и миозин также агрегируют, что указывает на участие актиновых филамент в регуцляции формы клетки.

Структуры, формируемые плазмолеммой

Контуры клетки, даже на светооптическом уровне, не представляются ровными и гладкими, а электронная микроскопия позволила обнаружить и описать в клетке различные структуры, которые отражают характер ее функциональной специализации. Различают следующие структуры:

1. Микроворсинки – выпячивание цитоплазмы, покрытые плазмолеммой. Цитоскелет микроворсинки сформирован пучком актиновых микрофиламент, которые вплетаются в терминальную сеть апикальной части клеток (рис. 5). Единичные микроворсинки на светооптическом уровне не видны. При наличии значительного их числа (до 2000-3000) в апикальной части клетки уже при световой микроскопии различают “ щеточную каемку”.

2. Реснички – располагаются в апикальной зоне клетки и имеют две части (рис. 6) : а) наружную - аксонему

Б) внутреннюю – безальное тельце

Аксонема состоит из комплекса микротрубочек (9 + 1 пары) и связанных с ними белков. Микротрубочки образованы белком тубулином, а ручки – белком динеином – эти белки в совокупности формируют тубулин-динеиновый хемомеханический преобразователь.

Базальное тельце состоит из 9 триплетов микротрубочек, расположенных у основания реснички и служит матрицей при организации аксонемы.

3. Базальный лабиринт – это глубокие инвагинации базальной плазмолеммы с лежащими между ними митохондриями. Это механизм активного всасывания воды, а так же ионов против градиента концентрации.

1. Транспорт низкомолекулярных соединений осуществляется тремя способами:

1. Простая диффузия

2. Облегченная диффузия

3. Активный транспорт

Простая диффузия – низкомолекулярные гидрофобные органические соединения (жирные кислоты, мочевина) и нейтральные молекулы (Н О, СО, О). С увеличением разности концентраций между отсеками, разделенными мембраной, растет и скорость диффузии.

Облегченная диффузия – вещество идет через мембрану также по направлению градиента концентрации, но с помощью транспортного белка – транслоказы. Это интегральные белки, обладающие специфичностью в отношении переносимых веществ. Это, например, анионные каналы (эритроцит), К - каналы (плазмолемма возбужденных клеток) и Са - каналы (саркоплазматический ретикулум). Транслоказа для Н О – это аквапорин.

Механизм действия транслоказы:

1. Наличие открытого гидрофильного канала для веществ определенного размера и заряда.

2. Канал открывается только при связывании специфического лиганда.

3. Канала нет как такового, а сама молекула транслоказы, связав лиганд, поворачивается в плоскости мембраны на 180 .

Активный транспорт – это транспорт с помощью такого же транспортного белка (транслоказы), но против градиента концентрации. Это перемещение требует затрат энергии.